3。Overall actual heat transfer coefficient is then calculated and compared with the assumed values of U。 

4。If the difference between assumed and ac- tual values is within 0。5%, then algorithm goes to the next step。 Otherwise it assigns new Uassumed = Ucalc and iterates the step 2 until the Uassumed and Ucalc values are within 0。5% agreement。 

5。The computed values of flow velocities and  the constructive details of the exchanger structure are then used to evaluate the cost objective function。 The optimization algorithm, based on the value of the ob- jective function, updates the trial values of the optimi- zation variables which are then passed on to the de- sign routine to define a new architecture of the heat exchanger。 The process is iterated until a minimum of the objective function is found or a prescribed conver- gence criterion is met。 

Heat exchanger design procedure 

This section describes step by step calculation  procedure to evaluate heat exchanger area, tube side 

Figure 1。 Flowchart for heat exchanger design using SA algorithm。 

and shell side pressure drop and total cost of heat exchanger。 Equations (1) to (28) can be found from  Kern [14], Sinnot [15], Caputo et al。 [6]  as  well as Patel and Rao [9]。 

The logarithmic mean temperature difference (LMTD) is determined by: 

LMTD (Thi    Tco ) (Tho   Tci  )                                   (1) 

ln T   hi  Tco  

T   

Tho ci  

For sensible heat transfer, the heat transfer rate is given by: 

Table 1。 Search optimization variables and their options 

Variable name Corresponding options 

The correction factor, F, for the flow configuration involved is found as a function of dimensionless tem- perature ratio for most flow configurations of: 

The Darcy friction factor ft is calculated as fol- lows: 

f   (1。82log 10Ret    1。64)2 

where the correction coefficient R is given by:      (4) 

Tco Tci

Efficiency P is given by: 

where Ret is the tube side Reynolds number  and given by: 

where di is the inside diameter of tube and for sim- plicity kept constant as di  = 0。8d0  in this work。    How-

ever, for more rigorous calculations, instead of keep- ing it constant, variable pipe thickness can be used 

Assuming the overall heat transfer coefficient  Uassumed, the heat exchanger surface S is   computed  by: 

from tables of tube manufacturers: schedules 40 or 80 or standard tubing gages: B。W。G。 and Stub’s gage。 

Prt is the tube side Prandtl number given by: 

Tube side calculations。 Number of tubes, Nt, and tube bundle diameter, Db, are calculated as follows: 

According to flow regime, the tube side heat transfer coefficient (ht) is computed from following correlation for Ret 10000: 

where K1 and n1 are coefficients that take values ac- cording to flow arrangement and number of passes as 

per table given by Sinnot [15]。 

Velocity through tubes is found by: 

Shell side calculation 

Clearance between tube bundle diameter and  shell diameter is calculated from the figure given by  Sinnot [15] for different head types as follows: 

上一篇:船舶建造规格书英文文献和中文翻译
下一篇:可变压缩比柴油发动机英文文献和中文翻译

AngularJS技术介绍英文文献和中文翻译

有限元模拟在开模锻造中...

RANSAC算法全景图像拼接关键技术研究+源程序

柴油机大涡中小火焰模型...

数字通信技术在塑料挤出...

快速成型制造技术英文文献和中文翻译

数控技术和设备的发展趋...

“时尚与旅游”电子杂志的设计制作

ASP.net+sqlserver会员管理系统设计

家电制造企业绿色供應链...

基于安卓平台的二维码会议管理系统设计

农村幼儿教育开题报告

企业科研管理中统计报表...

华夫饼国内外研究现状

高校体育场馆效益研究【2772字】

透过家徽看日本文化家紋から見る日本文化

论商业银行中间业务法律...