摘要:针对水体中诺氟沙星难以降解的状况,采用CoFe2O4/GO复合催化剂催化PMS降解诺氟沙星。原理是PMS在催化剂催化下产生具有强氧化性的•SO4-,•SO4-能将水体中的诺氟沙星氧化降解。本课题主要研究了催化剂中CoFe2O4的负载量、催化剂投加量、PMS浓度、温度、pH值、阴离子对CoFe2O4/ GO/PMS工艺的影响和复合催化剂的稳定性。研究结果是复合催化剂负载量越大降解速率越快;在一定投加量范围内,降解速率与复合催化剂和PMS的量呈正相关;降解速率随着温度的升高而增加;降解实验的最适pH值为7~9;Cl-对降解反应起到抑制作用,HCO3- 和H2PO42- 在一定范围内对降解反应起到促进作用;CoFe2O4/GO复合催化剂有很强的稳定性。26586 毕业论文关键词:诺氟沙星 CoFe2O4/GO复合催化剂 氧化降解
Study on Oxidation Degradation of Norfloxacin by PMS Catalyzed by CoFe2O4/GO
Abstract:The degradation of norfloxacin by PMS was catalyzed by CoFe2O4 / GO composite catalyst for the degradation of norfloxacin in water. The principle is that PMS produces a strong oxidative SO4-, SO4- can catalyze oxidative degradation of norfloxacin in water under catalyst catalysis. In this study, the effects of supported catalyst loading, catalyst concentration, PMS concentration, temperature, pH value, anions on the CoFe2O4 / GO / PMS process and the stability of the composite catalyst were studied. The results showed that the degradation rate was higher than that of the composite catalyst and the PMS. The degradation rate increased with the increase of the temperature. The optimum pH value of the degradation experiment was 7~9; Cl- inhibits the degradation reaction and the catalytic activity of HCO3- and H2PO42- is promoted in a certain range. The CoFe2O4 / GO composite catalyst has good stability.
Key words: norfloxacin CoFe2O4/GO composite catalyst oxidative degradation
目 录