摘要:针对水环境中啶虫脒难以通过传统工艺去除的问题,采用高级氧化技术紫外激活过氧化氢( UV/H2O2) 去除水中啶虫脒 。比较了 UV/H2O2 系统与UV 系统和H2O2系统对啶虫脒的降解效果,并分别考察了底物浓度、过氧化氢浓度、pH值、阴离子和不同水体对啶虫脒在UV/H2O2系统下降解效果的影响。实验的结果表明: UV/H2O2 会产生羟基自由基,大大提高了水中啶虫脒的降解速率; 啶虫脒降解过程符合准一级动力学模型; 较低的啶虫脒浓度和较高的过氧化氢浓度有利于啶虫脒降解; pH=5时,啶虫脒降解速率较快; 氯离子浓度在5mmol/L时啶虫脒降解速率较快;碳酸氢根离子浓度在5mmol/L时啶虫脒降解速率较快;硝酸根离子浓度在10mmol/L时啶虫脒降解速率较快;在工业废水中啶虫脒降解速率较慢。26639 毕业论文关键词:啶虫脒;紫外;过氧化氢;高级氧化工艺
Study on UV/H2O2 degradation of acetamiprid in water
Abstract: As traditional technologies were ineffective in removal of acetamiprid in water,one of the advanced oxidation processes ( AOPs) ,UV-activated perhydrol ( UV / H2O2) was used for degradation of acetamiprid in water. The efficiencies of UV / H2O2, UV and H2O2 were compared. The effects of initial acetamiprid concentration,H2O2 concentration,p H value , negative ions ,and different waters on UV / H2O2 degradation of acetamiprid were studied. The results revealed that the UV/H2O2 could generates hydroxyl radicals to help decompose acetamiprid in water more quickly. The acetamiprid degradation process was in line with the pseudo-first-order kinetic model. Lower initial acetamiprid concentration and higher H2O2 concentration could enhance the reaction. The degradation of acetamiprid by UV /H2O2 was faster when the pH value was 5.The degradation of acetamiprid by UV / H2O2 was faster when the chloride ions concentration was 5mmol/L.The degradation of acetamiprid by UV / H2O2 was faster when the bicarbonate ions concentration was 5mmol/L.The degradation of acetamiprid by UV / H2O2 was faster when the nitrate ions concentration was 10mmol/L.The degradation of acetamiprid by UV / H2O2 was slower when the industrial waste water was used.
Key words: Acetamiprid;ultraviolet;perhydrol;advanced oxidation processes
目 录