摘要 当今社会中,能源的储存以及高效率转化至关重要。其中钙钛矿太阳能电池的发展迅猛,其光电转换效率已经突破 20%,是光电转换领域一个研究热点。在构成高效钙钛矿太阳能电池的结构中,空穴传输层是其中的重要结构之一,它有利于提高电池稳定性以及光电转换效率,所以填充于空穴传输层的空穴传输材料的性能尤为重要。本文以三蝶烯为母体设计了一系列空穴传输材料分子,利用电子密度泛函理论计算了 6 个分子的HOMO,LUMO 能级以及空穴重组能,从中筛选出其中较为合适的分子 TET。TET 分子的两个关键参数HOMO能级和空穴重组能分别为-4.33 (eV)和113 (meV),处于理想的范围之内,所以有望成为一个具有优良的空穴传输性能的空穴传输材料。因此,TET 分子已由实验课题组加以合成并进行紫外可见光谱验证。 41662 毕业论文关键词 空穴传输材料 电子密度泛函 HOMO能级 空穴重组能 紫外可见光谱
Title Computer-aided Design of Organic Hole Transport Materials
Abstract The storage and efficient conversion of energy is very important for modern society. Organic-inorganic perovskite solar cells (PSCs) based on organic hole transport materials (HTMs) have attracted wide interest due to their high power conversion efficiency which exceeds 20%.The hole transport layer is a key component of PSCs and is critical to improve the stability and energy conversion efficiency of the battery. Thus the performance of the HTMs filled in the hole transport layer is particularly important. The goal of this work is to design high quality HTMs. To achieve this goal, we calculate two properties, i.e. HOMO energy level and hole reorganization energy, of 7 molecules in order to screen out the most appropriate molecule. The hole reorganization energy is calculated based on electron transfer theory. We carry out first principles density functional theory calculation to determine those two properties of various molecules. We find TET is a particular promising molecule. Its HOMO energy level is -4.33 (eV), while its hole reorganization energy is 113 (meV). Both properties match the expected ideal values. Now TET is under synthesis for verification of its functions by an experimental group.
Keywords Organic hole transport material Density functional theory (DFT) Hole reorganization energy HOMO TD-DFT
目次