情感文本分类(sentiment classification)是情感分析的核心内容之一,它可以看作一类特殊的文本分类问题。传统的文本分类主要指对文本按照主题进行分类,而情感文本分类的任务是对包含主观信息的文本按照情感进行分类。它在学科上涉及到人工智能、自然语言处理、模式识别、机器学习、信息检索、数据挖掘等多项基础研究,具有重要的学术研究价值。

2.1.1 情感分析的简单性分类

情感分析通常分成两类问题,肯定的和否定的。通常将产品的评论用作训练和测试使用的数据。由于网上的评论是靠评论者们划分等级来评定的,例如1-5星的评分,通过星级来区分正面和负面的评价。例如,一个4或5星级的审查,被认为是一个积极的评价,与1-2星级的评论被认为是一种负面的评价。大多数的研究论文不使用中性类,是因为这使得分类问题相当容易,但它是可以使用中性类,例如,设定所有3星级评论为中性类。

上一篇:基于互联网的远程控制协议的设计与实现
下一篇:VC++图像轮廓提取方法的研究

基于MOODLE平台的在线交互式学习设计

基于离散事件系统Petri网模型的可达图研究

基于高斯过程动态模型的时序数据恢复方法

基于深度学习的目标识别算法研究

MATLAB基于流形学习与神经网络的预测建模

智能算法的海上应急救援基地选址优化设计

基于SNA的唐诗关系分析

紫陵阁

淮安市老漂族心理与休闲体育现状的研究

弹道修正弹实测弹道气象数据使用方法研究

林业机械作业中的安全性问题【2230字】

组态王文献综述

大学生就业方向与专业关系的研究

适合宝妈开的实体店,适...

小学《道德与法治》学习心得体会

人事管理系统开题报告

浅谈动画短片《天降好运》中的剧本创作