摘要:行列式是高等代数中基本而重要的内容,行列式解法有很多,本文主要归纳出几种 常用的解法。行列式作为线性代数的一个基本工具,在很多领域都会涉及到行列式,本文 也会列出行列式在解线性方程组,解析几何等方面的应用。85987

毕业论文关键词:行列式,解法,应用。

Abstract:The determinant of higher algebra is the basic and important content, there are a lot of determinant method, this paper summarizes several commonly used methods。 The determinant as a basic tool in many fields of linear algebra。 More or less are related to the determinant, this paper will also list the determinant in solving linear equations,analytic geometry and so on。 

Key Words : determinant,solution,application。 

目录

1 引言 4

1。1 行列式的定义 4

1。2 行列式的性质 4

2 行列式解法 4

2。1 定义法 5

2。2 化三角形法 5

2。3 拆分法 6

2。4 降阶法(按行或列展开) 7

2。5 升阶法(加边法) 8

2。6 析因子法 9

2。7 递推法 9

2。8 数学归纳法 10

2。9 利用范德蒙行列式 11

2。10 拉普拉斯定理 11

2。11 分块矩阵的行列式 12

3 行列式的应用 13

3。1 行列式在求解线性方程组源Q于W优H尔J论K文M网WwW.youeRw.com 原文+QQ75201.,8766 中的应用 13

3。2 行列式在求逆矩阵中的应用 13

3。3 行列式在解析几何中的应用 14

3。3。1 在解析几何图形方程中的应用 14

3。3。2 在计算面积,体积中的应用 14

3。4 行列式在证明拉格朗日中值定理中的应用 15

结论 16

参考文献 17

致谢 18

1 引言 

行列式是代数学中的线性代数的重要分支,是研究高等代数的重要工具。本文主要探讨 行列式的解法以及行列式的简单应用。本文将根据行列式的特点以及行列式的性质,归纳出 一些常用的解法。由于行列式算法的技巧性比较强,解法也有很多,所以用相应的方法计算 对应的行列式可以减少我们的计算量。同时,也将介绍行列式的几个简单应用。本文将总结 出定义法,化三角形法,降阶法,升阶法,析因子法,递推法,数学归纳法,利用范德蒙

德行列式等解法以及行列式在求解线性方程组,求逆矩阵,在解析几何等方面的应用。 在归纳解法和应用之前,我将给出行列式的定义和性质。

1。1 行列式的定义 

定义:行列式是一个值,它是取自所有不同行不同列元素乘积的代数和。

1。2 行列式的性质 

性质 1 1行列互换,行列式不变。 

上一篇:导函数的性质与应用
下一篇:积分不等式的研究

柯西不等式证明归纳及其应用研究

浅谈数学归纳法在中学数学的应用

二项式定理巧解数学相关问题归纳和解析

数学高考中三角函数考点归纳总结

浅谈行列式的计算各种方法

初等函数最值问题的解法

线性方程组的迭代解法及收敛性研究

浅谈动画短片《天降好运》中的剧本创作

适合宝妈开的实体店,适...

组态王文献综述

紫陵阁

弹道修正弹实测弹道气象数据使用方法研究

小学《道德与法治》学习心得体会

大学生就业方向与专业关系的研究

淮安市老漂族心理与休闲体育现状的研究

人事管理系统开题报告

林业机械作业中的安全性问题【2230字】