令 表示一个图,其中 是一个有限的非空的节点集, 是边集。图 的一条边记为 ,表示这条边是从节点 开始到节点 结束的,这同时也意着节点 可以直接接收到节点 的信息。在这种情况下,节点 称为节点 的父亲节点,而节点 称为节点 的孩子节点。所有节点 的邻居节点组成的集合记为 。当且仅当 的同时也意着 ,则图 是无向图,否则,图 是有向图。一条有向路径是一组边的序列,形如 。一条无向路径也是类似定义的。在无向图 中,如果从节点 到节点 有路径,则称 和 是连通的。如果对于图中任意两个顶点都是连通的,则称 是连通图。在有向图中,如果对任意两个节点 、 ,都有从 到 的路径和从 到 的路径,则称 是强连通图。

2.2  矩阵知识

为了方便描述图中边和节点的关系,我们引入了邻接矩阵的概念。图 的带权重的邻接矩阵 定义如下:如果 ,则 ,否则, 。由于不存在节点自身到自身的封闭路径,所以 。无向图对应的邻接矩阵是对称的。入度矩阵定义为 ,若图 是对称的,则有每个节点的出度等于入度,这时称 为度矩阵。如果一个图对应的邻接矩阵的出度和入度相等,则称该图为平衡图。

另一种描述节点与边之间的关系的矩阵是图 的拉普拉斯矩阵 ,定义为:若 ,则有 ,否则 。即 。在无向图中,拉普拉斯矩阵是对称半正定的,但是有向图并不具备此性质。 

拉普拉斯矩阵具有三大特性,这些特性是研究有限时间一致性协议收敛的重要因素。

性质一:0是矩阵 的特征值,并且 为对应的特征向量,其中 ; 

性质二:如果图 是强连通图,则0为矩阵 的单一特征值;  

性质三:如果图 是连通且对称的,则矩阵 对称且正半定,所有的特征值都为实数且非负,可以写成以下形式: 。

上一篇:基于MMSE估计的自适应脉冲压缩
下一篇:AdaBoost算法基于DSP的嵌入式人脸检测

动车组滚动轴承FCM智能诊断研究

基于51单片机自动门智能控制系统设计

STC89C52单片机智能温度监测系统设计

动车组滚动轴承SVM智能诊断研究

连续梁结构上动态多点激励识别研究+源代码

MATLAB动车组滚动轴承RBF智能诊断研究

Arduino的家居智能安防系统的设计+程序+电路图

中国古代秘书擅权的发展和恶变

浅谈传统人文精神茬大學...

浅谈新形势下妇产科护理...

《醉青春》导演作品阐述

多元化刑事简易程序构建探讨【9365字】

辩护律师的作证义务和保...

高校网球场馆运营管理初探【1805字】

国内外无刷直流电动机研究现状

拉力采集上位机软件开发任务书

谷度酒庄消费者回访调查问卷表