This article has taken the eigenvalue extraction methods based on wavelet transform combine with discrete cosine transform and the PCA(Principal Component Analysis) which is simple, rapid and easy wait for a characteristic, can reflect from whole face ,image gray correlation has certain practical value. 
The feature extraction based on the combining of wavelet transform and discrete cosine transform is used in the paper.Image is decomposed using wavelet transform and its low frequency part reserves the majority of information and energy.At the same time,the relatively larger feature vector modulus is generated in the sensitive location of the image after the wavelet transform.Discrete cosine transform is an orthogonal transformation.A variety of orthogonal transformation can reduce the relevance of random vector in a certain extent and the energy will be concentrated on a small number of transform coefficients when the signal was transformed by most of the orthogonal transformation.This can be proved in the mathematics.Those are useful for face recognition when these advantages were used in face image
Based on above theory: the face recognition technology could be applied in many fields. For example:the access control system.First we can preprocess the given face image. Second feature value is extracted.At last,comparing with face image and the model in the face database to determine whether it belongs to the face database.If so access control system will be opened and this can realize the purpose of automatic recognition.The results of experiment indicate the new method of the technology of human face recognition is available.
Key words: face recognition;image preprocessing;feature extraction;wavelet transform;PCA
目录
摘要     1
Abstract     2
第一章 绪论     6
1.1 背景和意义    6
1.2 发展现状     7
1.3 研究历史及常见的识别方法     8
1.4 人脸识别技术所面临的问题     10
  1.5 论文结构安排     10
第二章  MATLAB简介    11
第三章  人脸识别方法与理论     12
3.1人脸识别概述     12
3.1.1人脸识别的实现过程     12
3.1.2人脸识别技术的优点和难点     13
3.1.3人脸识别技术的分类     14
3.2特征值提取及方法     14
3.2.1人脸图像特征值提取     14
3.2.2特征提取的方法     15
3.3距离度量和分类器     19
3.3.1距离度量     19
3.3.2分类器     19
  3.4本章小结     20
第四章  人脸图像的预处理     20
4.1彩色图像处理     20
4.2灰度归一化     21
4.3灰度图像平滑与锐化处理     23
4.4定位人脸     24
4.5几何归一化     26
4.6本章小结     27
第五章  人脸图像的特征值提取     27
5.1小波变换的基本概念     27
5.1.1连续小波变换     28
5.1.2离散小波变换     29
5.1.3多分辨率分析     29
5.1.4小波包和多小波理论     30
5.2离散余弦变换(DCT)     32
5.3基于DWT和DCT的特征值提取     32
5.4 PCA方法     32
5.4.1K-L变换     32
5.4.2特征值提取     33
5.5本章小结    34
第吹冰章 基于MATLAB的人脸识别系统仿真实现     34
上一篇:单片机智能家电控制中心系统设计
下一篇:MATLAB列车称重监测系统设计及数据处理仿真

基于WinPcap网络接口的网络...

PCA算法Matlab的人脸识别的设计与仿真

主元分析方法PCA人脸识别...

PCA算法人脸识别的MATLAB实现代码

基于PCA的静态人脸识别系统设计

PCA的TE过程故障检测系统设计

基于Matlab的PCA人脸识别的设计与仿真+程序

从企业eHR建设谈管理信息...

大规模MIMO系统的发展研究现状

遥感土地用变化监测国内外研究现状

《水浒传》中血腥暴力研...

浅析施工企业保理融资成...

提高小學语文課堂朗读教...

PCI+PID算法直流力矩电机速...

MNL模型历史城区居民活动...

小型通用机器人控制系统设计任务书

高效课堂教师问卷调查表