毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
TMS320C5502基于DSP的FFT编程设计(5)
信号处理用于诊断检查较为成功的实例,有脑电或心电的自动分析系统、断层成像技术等。断层成像技术是诊断学领域中的重大发明。X射线断层的基本原理是X射线穿过被观测物体后构成物体的二文投影。接收器接收后,再经过恢复或重建,即可在一系列的不同方位计算出二文投影,经过运算处理即取得实体的断层信息,从而大屏幕上得到断层造像。信号处理在生物医学方面的应用正处于迅速发展阶段。
数字信号处理在其他方面还有多种用途,如雷达信号处理、地学信号处理等,它们虽各有其特殊要求,但所利用的基本技术大致相同。在这些方面,数字信号处理技术起着主要的作用。
1.3 DSP设计目的及内容
加深对DFT算法原理和基本性质的理解,熟悉FFT的算法原理和FFT子程序的算法流程和应用,学习用FFT对连续信号和时域信号进行频谱分析的方法;学习DSP中FFT的设计和编程思想,,实现FFT运算,对输入信号进行频谱分析。
2 FFT算法分析
2.1 FFT设计原理
快速傅氏变换(FFT)是一种高效实现离散傅氏变换的快速算法,是数字信号处理中最为重要的工具之一,它在声学、语音、电信、和信号处理等领域有着广泛的应用。
对于有限长离散数字信号{x[n]},0 n N-1,其离散谱{x[k]}可以由离散付氏变换(DFT)求得。可以方便的把它改写为如下形式:
不难看出,WN是周期性的,且周期为N,即
N的周期性是DFT的关键性质之一。为了强调起见,常用表达式WN取代W以便明确其周期是N。
即W =e ,称为蝶形因子式旋转因子。
对于旋转因子W 来说,有如下的对称性和周期性:
对称性:W =-W 周期性:W =W
FFT算法可以分为按时间抽取FFT和按频率抽取FFT两大类,输入也有和复数之分,一般情况下,都假定输入序列为复数。FFT算法利用旋转因子的对称性和周期性,加快了运算速度。用定点DSP芯片实现FFT程序时,一个比较重要的问题是防止中间结果的溢出,防止中间结果的溢出的方法是对中间数值归一化。为了避免对每级都进行归一化会降低运算速度,最好的方法是只对可能溢出的进行归一化,而不可能溢出的则不进行归一化。
由DFT的定义可以看出,在x[n]为复数序列的情况下,完全直接运算N点DFT需要(N-1)2次复数乘法和N(N-1)次加法。因此,对于一些相当大的N值(如1024)来说,直接计算它的DFT所作的计算量是很大的。FFT的基本思想在于,将原有的N点序列序列分成两个较短的序列,这些序列的DFT可以很简单的组合起来得到原序列的DFT。例如,若N为偶数,将原有的N点序列分成两个(N/2)点序列,那么计算N点DFT将只需要约[(N/2)2 •2]=N2/2次复数乘法。即比直接计算少作一半乘法。因子(N/2)2表示直接计算(N/2)点DFT所需要的乘法次数,而乘数2代表必须完成两个DFT。上述处理方法可以反复使用,即(N/2)点的DFT计算也可以化成两个(N/4)点的DFT(假定N/2为偶数),从而又少作一半的乘法。这样一级一级的划分下去一直到最后就划分成两点的FFT运算的情况。
FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的
图2.1蝶形运算
发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次复数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N^2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+N^2/2。继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。
共9页:
上一页
1
2
3
4
5
6
7
8
9
下一页
上一篇:
Protel DXP充电式吸引器电路研究+电路图
下一篇:
视觉导引车控制系统硬件设计
基于Kinect手势识别的遥操...
基于51单片机自动门智能控制系统设计
DSP光伏并网控制装置的设计+源代码
基于TI-DSP平台的电力电子测控平台设计
基于传感器网络的分布式集员滤波问题的研究
基于飞思卡尔芯片LED色彩控制器的设计
基于磁共振技术的家用无...
高校网球场馆运营管理初探【1805字】
中国古代秘书擅权的发展和恶变
浅谈新形势下妇产科护理...
浅谈传统人文精神茬大學...
谷度酒庄消费者回访调查问卷表
国内外无刷直流电动机研究现状
辩护律师的作证义务和保...
《醉青春》导演作品阐述
拉力采集上位机软件开发任务书
多元化刑事简易程序构建探讨【9365字】