2.3 Derivative term
The rate of change of the process error is calculated by determining the slope of the error over time (i.e. its first derivative with respect to time) and multiplying this rate of change by the derivative gain Kd. The magnitude of the contribution of the derivative term to the overall control action is termed the derivative gain, Kd.
 
The derivative term is given by:
Dout: Derivative output
Kd: Derivative Gain, a tuning parameter
e: Error = SP − PV
t: Time or instantaneous time (the present)
The derivative term slows the rate of change of the controller output and this effect is most noticeable close to the controller setpoint. Hence, derivative control is used to reduce the magnitude of the overshoot produced by the integral component and improve the combined controller-process stability. However, differentiation of a signal amplifies noise and thus this term in the controller is highly sensitive to noise in the error term, and can cause a process to become unstable if the noise and the derivative gain are sufficiently large.
2.4 Summary
The output from the three terms, the proportional, the integral and the derivative terms are summed to calculate the output of the PID controller. Defining u(t) as the controller output, the final form of the PID algorithm is:
 
and the tuning parameters are
Kp: Proportional Gain - Larger Kp typically means faster response since the
larger the error, the larger the Proportional term compensation. An excessively large proportional gain will lead to process instability and oscillation.
Ki: Integral Gain - Larger Ki implies steady state errors are eliminated quicker. The trade-off is larger overshoot: any negative error integrated during transient response must be integrated away by positive error before we reach steady state.
Kd: Derivative Gain - Larger Kd decreases overshoot, but slows down transient response and may lead to instability due to signal noise amplification in the differentiation of the error.
3. Loop tuning
If the PID controller parameters (the gains of the proportional, integral and derivative terms) are chosen incorrectly, the controlled process input can be unstable, i.e. its output perges, with or without oscillation, and is limited only by saturation or mechanical breakage. Tuning a control loop is the adjustment of its control parameters (gain/proportional band, integral gain/reset,
derivative gain/rate) to the optimum values for the desired control response.
The optimum behavior on a process change or setpoint change varies depending on the application. Some processes must not allow an overshoot of the process variable beyond the setpoint if, for example, this would be unsafe. Other processes must minimize the energy expended in reaching a new setpoint. Generally, stability of response (the reverse of instability) is required and the process must not oscillate for any combination of process conditions and setpoints. Some processes have a degree of non-linearity and so parameters that work well at full-load conditions don't work when the process is starting up from no-load. This section describes some traditional manual methods for loop tuning.
There are several methods for tuning a PID loop. The most effective methods generally involve the development of some form of process model, then choosing P, I, and D based on the dynamic model parameters. Manual tuning methods can be relatively inefficient.
The choice of method will depend largely on whether or not the loop can be taken "offline" for tuning, and the response time of the system. If the system can be taken offline, the best tuning method often involves subjecting the system to a step change in input, measuring the output as a function of time, and using this response to determine the control parameters.
Choosing a Tuning Method
MethodAdvantagesDisadvantages
Manual TuningNo math required. Online method.Requires experienced
上一篇:中央空调设计英文文献和中文翻译
下一篇:土方工程的地基勘察英文文献和中文翻译

AngularJS技术介绍英文文献和中文翻译

开关电源水冷却系统英文文献和中文翻译

减数分裂和基因重组英文文献和中文翻译

太阳能最大功率点追踪和...

移动码头的泊位分配问题英文文献和中文翻译

虚拟船舶装配集成建模方...

中学生科学探究中对等论...

基于Joomla平台的计算机学院网站设计与开发

上海居民的社会参与研究

从政策角度谈黑龙江對俄...

提高教育质量,构建大學生...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...

AES算法GPU协处理下分组加...

压疮高危人群的标准化中...

酵母菌发酵生产天然香料...