value during the compression process and specifically with higher rate in the advance stage of compression.
4 Computational work
4.1 Constitutive equations
The development of axisymmetric mode of collapse during the compression of shells has been analysed using
the finite element method. The material of the shells is assumed as homogeneous, isotropic, incompressible
and rigid visco-plastic. The details of the formulation and solution technique can be found in Ref. [9]. The
constitutive relation for such a material is given by the so-called Norton-Hoff law [12] as followswhere ˜ Sij , ˜ ˙ εij , K and m represents the components of the deviatoric stress tensor, strain rate tensor, material
consistency and strain rate sensitivity index, respectively. The vi is the component of velocity in the direction
“i” at any point of the problem domain. The incompressibility condition is written as below where ˙ ε11, ˙ ε22 and ˙ ε33 are the principal strain rates. The material consistency K depends upon the thermo-
mechanical condition of the material. For most metals K can be approximated by means of the following
multiplicative law;where K0 is a constant, a is the strain hardening parameter, β is the temperature sensitivity term and T is
the absolute temperature. The values of the parameters K0, a, β and m can be found by conducting uniaxial
tensile tests at different strain rates and temperatures. By suitable choice of these parameters, equations (3)
and (5) can approximate the mechanical behaviour of most of the metals at different temperature and strain
rate ranges. Using above equations the constitutive equation for uniaxial case gets the form as follows摘要:根据R / T值范围从25到43的铝球壳轴压进行中央加载。对准静态测试的INSTRON机(型号1197 )上进行50T的容量球壳进行了测试,以确定其崩溃的模式,并研究相关的能量吸收能力。在实验中所有的球壳被发现塌陷,由于形成轴对称的向内酒窝带滚动塑性铰有关。有限元计算还提出了崩溃的轴对称模式的发展模式。实验和计算变形的形状和它们的相应的载荷压缩和能量压缩曲线的结果被提出并进行比较以验证计算模型。不同的计算的变化应变和应力进行了研究。在发展的计算结果力学的基础轴对称的崩溃向内酒窝模式已经呈现,分析和讨论。21675 毕业论文关键词:半球壳,轧制塑性铰,能量吸收,FORGE2
符号列表
R 意着球壳的半径
L 球壳跨度
Z 球壳的深度
t 球形壳的平均厚度
Rp 滚动半径或旅行塑性铰
H 球壳中的压缩的任何阶段,总的轴向压缩
P 加载在球形壳在压缩的任何阶段
Mp 每单位长度的塑料瞬间
偏应力张量
K 材料的一致性
有效应变率
M 应变速率敏感性指数
K0 常数项
a 应变硬化期限
有效应变
有效应力
温度敏感性长期
温度的绝对值
剪切应力
摩擦系数,α1和α2在顶部和底部
灵敏度滑动速度
管和压盘之间的相对滑动速度