Abstract: Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot’s comprehensive performance. So far,effective theoretical model is still lacked to solve the problems. The concept of SWCR’s adsorption performance is presented, and the techniques of improving utilization rate,23570
of given adsorption force and utilization rate of power are studied respectively to improve SWCR’s adsorption performance. The effect of locomotion mechanism selection and seal’s pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are
provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system’s thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller’s key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype,BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface,at the impeller’s rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system’s static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR’s adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.
1 Introduction∗
    There are a variety of tasks that need to be addressed on the inner/outer wall surfaces of high-rise buildings, such as non-destructive testing of chemical storage facilities, cleaning and maintenance of structures in city, material or information transmission in high-altitude rescue, urban anti-terrorism missions. For the purpose of ensuring the operation safety in extreme environments or improve benefit-cost ratio, wall-climbing robot (WCR) is used to accomplish these tasks. According to adsorption method,
WCRs can be roughly pided into magnetic adsorption, bionic adsorption and vacuum adsorption. Vacuum adsorption is further pided into high-vacuum and low-vacuum suction type. Compared with the former, low-vacuum robot does not request strict seal between sucker and wall, so dynamic seal is enough to meet the need, which means that continuous and relative movement∗exists between robot body and wall, and low-vacuum robot may also be known as the sliding wall-climbing robot(SWCR).
Depending on the adsorption , can be combined in many different forms of wall function and purpose mobile robot . Negative absorption is not strictly required for the wall material , the use of a very wide range . Among them, the single suction vacuum adsorption adsorption climbing robot vacuum remains largely dependent on the sealing device to maintain. Therefore , the wall position of maintaining its large vacuum and sealed unit generally exists between the wall sliding wall when the robot moves , easy to wear, poor adaptability to the wall . When crossing grooves or uneven surfaces , if the sealing device is not reliable, the vacuum is not easy to hold, poor safety performance. And multi- pin type negative pressure adsorption chuck wall of the mobile robot while enhancing the adaptability of the wall , but is interrupted moved , and the moving speed is slower.
上一篇:颚式破碎机的英文参考文献和翻译
下一篇:医院手术室室内空气英文文献和中文翻译

双足步行机器人英文文献和中文翻译

脑电图像P300机器人手臂运...

机器人运动模糊逻辑控制英文文献和中文翻译

机器人控制系统英文文献和中文翻译

水下机器人AUV叶片冷锻钉...

机器人学入门力学与控制英文文献和中文翻译

弧焊机器人传感器英文文献和中文翻译

AES算法GPU协处理下分组加...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

基于Joomla平台的计算机学院网站设计与开发

压疮高危人群的标准化中...

从政策角度谈黑龙江對俄...

浅论职工思想政治工作茬...

酵母菌发酵生产天然香料...

浅谈高校行政管理人员的...

提高教育质量,构建大學生...

上海居民的社会参与研究