12 11 {, ,..., } f aa a    where attributes 111 ~ aa are BT(Bend Type), ASBM(Anti-Spring Back Property of Material), T(Thickness), BR(Bend Radius), BA(Bend Angle), SD(Symmetry Degree), DLH(Distance between Bend Line and Hole), CH(Cliff Height), LDA(Linear Dimension Accuracy), ADA(Angular Dimension Accuracy Degree) and SQD(Surface Quality Degree).  The meaning of some attributes is shown in Fig. 1.  Fig. 1 Some attribute of a U type bend feature  A stamping design case base E can be represented as: { | ( , ), 1,..., } ii iiE ee fd i n     , where  if  is a bend feature and  id  is a related die design implementing the bend process.   3. Fuzzy-classification of cases  Among all of examples, there are some similar stamping parts. Before mining rules from the case base, similar parts and their die designs should be partitioned into one cluster. Fuzzy classification approach is adopted in this paper to do the partition[7]. The procedure of fuzzy classification is pided into three stages: 1) Calculate a similarity matrix SM based on the similarity of every two cases. 2) Transfer the similarity matrix SM into an equivalent matrix. 3) Partition the cases into several clusters.  3.1 constructing a similarity matrix  The similarity degree of every two cases can be represented by an N×N matrix SM (spq), where N is the case number of a case base and  spq denotes the similarity between two cases  ep  and  eq. Let ep=(ap1,ap2,…,ap11) and eq=(ap1,ap2,…,ap11) as described in section 2. The similarity degree of the two cases  is defined as:  11() ()1(,) ( , )WWpq p q j pj qjjs see wsmfaa    ¦ ,               (1) where smf() is the function to evaluate the similarity of two attributes and is defined as:   .                ,  (2)     Where  W=(w1,w2,…w11) is the weight vector for attributes. Some techniques like gradient decent can be used to automatically get optimized weights[8]. In this paper, we determine the weights manually as each attribute has its special importance and determining the weight manually brings a better accuracy of partition.  The resulting similarity matrix for the cases in table 1 is: 1 0.42 0.44 0.4 0.82 0.31 0.33 0.350.42 1 0.31 0.3 0.35 0.38 0.34 0.350.44 0.31 1 0.93 0.33 0.25 0.25 0.280.4 0.3 0.93 1 0.33 0.22 0.23 0.240.82 0.35 0.33 0.33 1 0.32 0.36 0.380.31 0.38 0.25 0.22 0.32 1 00.33 0.34 0.25 0.230.35 0.35 0.28 0.24!#%#" .46 0.450.36 0.46 1 0.970.38 0.45 0.97 1§•¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸©¹  3.2 Fuzzy classification  The technique of fuzzy classification is applied in this method to partition the cases into several clusters. This approach first transforms the similarity matrix to an equivalent matrix. According to Eq. 1 and Eq. 2, the similarity matrix is symmetric and reflexive because, for any  spq,  sii=1 and  sij=sji  (ij). To become an equivalent matrix, the similarity matrix should be transformed to be transitive by computing the transitive closure[7]. After the transformation, a  Ȝ-matrix of the equivalent matrix is calculated and cases are partitioned into several clusters. Cases that are approximately equivalent to each other are considered within the same cluster. The clustering algorithm is described as follows. step 1. Let  1() pq SM SM SM s    D , where max (min( , )) pq k pk kq s ss   . 1111        1                  j=1 and ( , )        0                 j=1 and 2*min( , )   j 1pqpj qj p qpj qjpj qjaasmf a a a aaaaa­°  °° z ®°° z° 
上一篇:案例检索算法冲压模具英文文献和中文翻译
下一篇:JSP的技术发展历史英文文献和中文翻译

冲压模具的铸造结构英文文献和中文翻译

遗传算法的热水器水箱盖...

拉伸冲压成形极限列线图...

3D注塑模具设计系统英文文献和中文翻译

知识工程的汽车覆盖件冲...

汽车覆盖件冲压模辅助设...

冲压渐进模具英文文献和中文翻译

浅谈动画短片《天降好运》中的剧本创作

人事管理系统开题报告

淮安市老漂族心理与休闲体育现状的研究

小学《道德与法治》学习心得体会

大学生就业方向与专业关系的研究

林业机械作业中的安全性问题【2230字】

紫陵阁

弹道修正弹实测弹道气象数据使用方法研究

组态王文献综述

适合宝妈开的实体店,适...