The difference between  measurement value in step (3) and target angle in step(1) is set as the control value of the joint anglewheel-ground contact point    corresponding to the max  can be foundthe value of joint angle with the minimum  calculated is set as the target valuethe wheel leg joint at  is controlled45 678andand Fig.5 Control process  Fig.6 Control system architecture    V. EXPERIMENT In this experiment, the validity of the posture control was tested and verified through the robot's moving on a slope with different tilt angles. The terrain was shown in Fig.7. The experiment environment was a slop which was a combination of two tilt angles, and the maximum tilt angle was 12 β =° . Let the robot's yaw angle of the forward direction be θ  (the angle between the forward direction of the  X axis of the robot and the maximum slope line of the slope). In order to compare the effects of the posture control, we chose a fixed posture when the robot moved: on the horizontal plane, all of MOBIT's arms were perpendicular to the ground ( 90 iα =± ° ), and it was the fixed posture.  °= 20 θ Fig. 7 Experiment environment of robot's posture control Let the yaw angle  0 θ =° , the robot with fixed posture moved in the direction along the maximum gradient with a speed of 20 / cm s . At this point, as without the method of posture control, the robot's roll angle and pitch angle entirely depended on the terrain's change, and roll angle was always 0°, the pitch angle's change was shown in dotted line in Fig. 15. And the solid line represented changes in the terrain contour; the dotted line represented the changes of the robot's roll angle and pitch angle when using posture control. It could be seen from the figure, when using posture control, the robot's pitch angle decreased which kept the body horizontal.     (a) Pitch angle   Roll angleReal angle010203040 (s)051015(°)    (b) Roll angle Fig. 8 Posture control on a slope with  0 θ =°  Let the yaw angle  20 θ =° , the robot moved with a speed of 20 / cm s , therefore, both of  roll angle φ  and the pitch angle ψ  should be controlled. The ideal posture of the posture control was that both of the pitch angle and roll angle were 0 and maintaining a constant heightg H . In Fig.8, the solid line represented the ground slope's changes in theory in the directions of pitch and roll, roll angle and the pitch angle could be calculated according to the following equations:   
   arcsin(sin( ) sin( ))arcsin(cos( ) sin( ))φ θ βψ θ β==                (5) Dotted line in the figure represented the changes of the robot's pitch angle and roll angle when using the posture control. It could be seen from the figure that the robot's pitch angle and roll angle obviously reduced. There was a peak error at the slopes' highest point which caused by the speed of the response of the feedback of the control of robot legs. Experiment’s pictures are shown in Fig.9.   (a) Pitch angle         (b) Roll angle Fig. 8 Posture control on a slope with  20 θ =°        (a) Posture control on a slope with  0 θ =°      (b) Posture control on a slope with  20 θ =°  Fig.9  Experiments pictures  Ⅵ. DISCUSS AND OUTLOOK Aiming at high moving capability and good adaptability based on its moving security insured, the original coupled optimization function was introduced synthesizing the analysis of stability and driving power, and a suboptimal solution which improves both the global traction and stability performance was presented for the robot. Our research can supply a theoretic base of coupled posture control of stability and traction optimization of HWLV mobile robot, build the coupled optimization criteria, and realize the coupled optimization with the posture control.  The next step in our work will be evaluated and validated the practical feasibility of control algorithm by experiments in uneven terrains with this robot ACKNOWLEDGMENT This work was supported by National Natural Science Foundation of China under No.61305119, the Middle-aged and Youth Scientist Incentive Foundation of Shandong Province (No. BS2013ZZ006),and Project of Shandong Province Higher Educational Science and Technology Program(No.J14LA53 and No.J13LB05),Authors gratefully acknowledge the support.                                      REFERENCES                                       
上一篇:模态识别和结构健康监测英文文献和中文翻译
下一篇:冷挤压生产过程的评价英文文献和中文翻译

AngularJS技术介绍英文文献和中文翻译

开关电源水冷却系统英文文献和中文翻译

减数分裂和基因重组英文文献和中文翻译

太阳能最大功率点追踪和...

移动码头的泊位分配问题英文文献和中文翻译

虚拟船舶装配集成建模方...

中学生科学探究中对等论...

提高教育质量,构建大學生...

上海居民的社会参与研究

STC89C52单片机NRF24L01的无线病房呼叫系统设计

基于Joomla平台的计算机学院网站设计与开发

酵母菌发酵生产天然香料...

从政策角度谈黑龙江對俄...

浅论职工思想政治工作茬...

压疮高危人群的标准化中...

浅谈高校行政管理人员的...

AES算法GPU协处理下分组加...