.2.3.2. Daf coal devolatilization rateA competing-reaction kinetic model is used to model thecoal devolatilization rate (Zhou, 1993). Assuming that thereare two competing reactions with one reaction having an ad-vantage at lower temperature and the other reaction havingan advantage at higher temperature. After the devolatiliza-tion process, the original daf coal changes to volatiles V1 andV2, and the residual char of R1 and R2. The two competingreactions are given asdaf coal

(1 − .1)R1 + .1V1; (R1)(1 − .2)R2 + .2V2; (R2)where .1 takes the value of volatile matter percentage ob-tained in proximate analysis of coal, and .2 is given thevalue of 0.8 to re4ect the characteristics of devolatilizationat high temperature. The daf coal devolatilization rate is pro-portional to the mass of daf coal and takes the 9rst-orderkinetic model. The volatile release rate can be given as˙ mv;p = −.1md;pBv1 exp − Ev1RTp −.2md;pBv2 exp − Ev2RTp : (8)The rate of mass reduction of daf coal can be given as˙ md;p = −md;pBv1 exp − Ev1RTp −md;pBv2 exp − Ev2RTp : (9)2.3.3. Char reaction rateThere are three kinds of heterogeneous char reactions onthe surface of coal particles. They are assumed as follows:C+O2 → CO2; (R1)2C+O2 → 2CO; (R2)C+CO2 → 2CO; (R3) A di>usion-kinetic model is used to simulate the overall re-action rate (Zhou, 1993). The heterogeneous char reactionrate is assumed to be of 9rst order in oxygen concentra-tion and carbon dioxide concentration. The char reactionrate for the above three kinds of surface reactions can bewritten as˙ m1c;p = − 1#c1&d2pS YO2;SB1 exp − E1RTp ; (10)˙ m2c;p = − 1#c2&d2pS YO2;SB2 exp − E2RTp ; (11)˙ m3c;p = − 1#c3&d2dS YCO2;SB3 exp − E3RTp : (12)The total species reaction rate is then obtained as˙ mc;p =˙ m1c;p +˙ m2c;p +˙ m3c;p; (13)˙ mo2;p = #c1 ˙ m1c;p + #c2 ˙ m2c;p; (14)˙ mco2;p = − ˙ m1c;p − #c1 ˙ m1c;p + #c3 ˙ m3c;p; (15)˙ mco;p = −(˙ m2c;p + #c2 ˙ m2c;p +˙ m3c;p + #c3 ˙ m3c;p): (16)The oxygen and carbon dioxide concentration YO2;S andYCO2;S at the coal particle surface can be calculated us-ing a stagnant 9lm theory, by solving the species di>u-sion equations near the surface of the coal particles andobtained asYo2;S = − ˙ mo2;p˙ mp+ YO2;g + ˙ mO2;p˙ mp exp(−Bp); (17)Yco2;S = − ˙ mco2;p˙ mp+ YCO2;g + ˙ mCO2;p˙ mp exp(−Bp); (18)where YO2;g and YCO2;g are mass fractions of oxygen and car-bon dioxide surrounding the coal particles which are equalto the oxygen and carbon dioxide concentrations at the grid.
2.4. Reaction kinetic constantsFor the coal type calculated in this paper, the reactionkinetic constants for the gas phase species of CH4 and CO,together with kinetic constants of coal particle moistureevaporation, devolatilization and carbon surface reactionsare given in Table 1 (Zhou, 1986).2.5. NOX formation modelFor NOX formation the Zel’dovich mechanism of thermalNO and the DeSoete mechanism of fuel NO are considered(Smoot, 1985). The mechanism of fuel NO formation isTable 1Reaction kinetic constantsChemical or physical process K = B exp(−E=RT)B unit E(J=mol)CH4 +2O2 → CO2 +2H2O1:6 × 1010 m3 kg−1s−1 1:081 × 1052CO + O2 → 2CO2 7:0 × 104 m3 kg−1s−1 6:651 × 104Moisture evaporation 8:32 × 105 4:228 × 104Devolatilizationreaction (1) 3:7 × 105 s−1 7:366 × 104reaction (2) 1:46 × 1013 s−1 2:511 × 105Char reaction 1 1:225 × 103 ms−1 9:977 × 104Char reaction 2 1:813 × 103 ms−1 1:089 × 105Char reaction 3 7:375 × 103 ms−1 1:380 × 105expressed byHCNNO O2N2NO(R1)  (R2)Coal nitrogen Char surface reaction (R3)(∗)The amount of NO produced in the combustion is char-acterized using the following steady-state transfer equationfor the mass 4ow of NO:@@x(uYS )+ @r@r(vYS )+ @r@ 

(rwYS )= @@x   e1Y@YS@x + @r@r r e1Y@YS@r + @r2@ 

上一篇:注射成型模具英文文献和中文翻译
下一篇:锥型磨进给机构机械设计英文文献和中文翻译

AngularJS技术介绍英文文献和中文翻译

开关电源水冷却系统英文文献和中文翻译

减数分裂和基因重组英文文献和中文翻译

太阳能最大功率点追踪和...

移动码头的泊位分配问题英文文献和中文翻译

虚拟船舶装配集成建模方...

中学生科学探究中对等论...

压疮高危人群的标准化中...

从政策角度谈黑龙江對俄...

浅论职工思想政治工作茬...

AES算法GPU协处理下分组加...

提高教育质量,构建大學生...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

酵母菌发酵生产天然香料...

基于Joomla平台的计算机学院网站设计与开发

浅谈高校行政管理人员的...

上海居民的社会参与研究