3.    Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann - Manuf Technol 60:603–626
4.    Neubauer T, Poll G, Denkena B, Maiss O (2013) Fatigue life extension of rolling element bearings by residual stresses induced through surface machining. World Tribology Congress, Torino
5.    Harris TA (2001) Rolling bearing analysis, 4th edn. Wiley, NewYork
6.    Liu JY, Tallian TE, McCool JI (1975) Dependence of bearings fatigue life on film thickness to surface roughness ratio. ASLE Trans 18(2):144–152
7.    Tallian TE, McCool JI (1971) An engineering model of spalling fatigue failure in rolling contact - II. The surface model. Wear 17:447–461
8.    Guo YB, Sahni J (2004) A comparative study of hard turned and cylindrically ground white layers. Int J Mach Tools Manuf 44(2–3):135–145
9.    Carroll RI, Beynon JH (2007) Rolling contact fatigue of white etching layer: Part I: Crack morphology. Wear 262:1253–1266
10.    Borbe C (2001) Bauteilverhalten hartgedrehter Funktionsflaechen. Dissertation, Universitaet Hannover
11.    Jivishov V (2008) Mikrogeometrische Einfluesse beim Weichund Hartspanen. Dissertation, Leibniz Universitaet Hannover
12.    Knuefermann MMW, McKewon PA (2004) A model for surface roughness in ultraprecision hard turning. Ann CIRP 53(1):99–102
13.    Toenshoff HK, Karpuschewski B, Borbe C, von Waelzlagerringen Praezisions-Hartdrehen (1997) 14th International Plansee Seminar, Reutte, Tirol
14.    Brammertz P-H (1961) Die entstehung der oberflaechenrauheit beim feindrehen. Ind-Anz 2:25–32
15.    Albrecht P (1959) New development in the theory of metal cutting process part 1: the ploughing process in metal cutting. Trans ASME 82(4):348–358
16.    Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann - Manuf Technol 63(2):631–653
17.    Oezel T, Hsu T-K, Zeren E (2005) Effects of cutting edge eometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int J Adv Manuf Technol 25:262–269
18.    Hua J, Shivpuri R, Cheng X, Bedekar V, Matsumoto Y, Hashimoto F, Watkins TR (2005) Effects of feed rate, workpiece hardness and cutting edge on subsurface residual stress in hard turning of bearing steel using chamfer ? hone cutting edge geometry. Mater Sci Eng A 394:238–248
19.    Hosseini SB, Ryttberg K, Kaminski J, Klement U (2012) Charaktersization of surface integrity by hard turning of bainitic and martensitic AISI 52100 steel. CIRP Procedia 1:494–499
20.    Thiele JD, Melkote SN (2000) Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel. Trans ASME 122:642–649
21.    Thiele JD, Melkote SN (2000) Effect of tool edge geometry on workpiece subsurface deformation and through thickness residual stresses for hard turning of AISI 52100 steel. J Manuf Process 2(4):1–7
22.    Hosseini SB, Beno T, Klement U, Kaminski J, Ryttberg K (2014) Cutting temperatures during hard turning - measurements and effects on white layer formation in AISI 52100. J Mater Process Technol 214:1293–1300
关于切削半径在硬态切削中对滚子轴承内圈表面完整性的影响
注:2015.3.12发表 2015.4.23 网上发表 2015.5.6德国工程生产学术会(WGP)

分离硬态切削是用为制造高精度坚硬零件的结束过程。过去几十年,他由于更高的弹性和生产效率被认为能替代传统研磨过程。此外,硬态切削和研磨相比增加了更好的效应。过程参数像切削速度、进给量、切削轨迹影响表面区域的效果像表面粗糙度。过去几年许多研究者已经分析过这些影响。然而,他们都涉及到了一两方面表面完整性的因素。事实上由于所有研究者有不同的实验环境,这几乎是不可能去比较硬态切削对表面完整性的影响。对于总结如何去识别制造滚子轴承时伴随着增加的最佳参数数值,已经发表的研究报告都覆盖了切削速度、进给量和切削半径对主要因素(滚子轴承表面残余应力、粗糙度、微观结构和硬度)的影响。管理硬态切削测试是和分析残余应力、表面粗糙度、硬态
上一篇:刷镀机镀笔英文文献和中文翻译
下一篇:自动化级进模钣金排样英文文献和中文翻译

活塞环/气缸套在摩擦和磨...

有限元模拟在开模锻造中...

在线学习的概述英文文献和中文翻译

数字通信技术在塑料挤出...

CAE技术在车辆安全性应用英文文献和中文翻译

切削加工新概念英文文献和中文翻译

嵌入型锚在软硬海底的抓...

从政策角度谈黑龙江對俄...

浅谈高校行政管理人员的...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

基于Joomla平台的计算机学院网站设计与开发

上海居民的社会参与研究

压疮高危人群的标准化中...

酵母菌发酵生产天然香料...

浅论职工思想政治工作茬...

AES算法GPU协处理下分组加...

提高教育质量,构建大學生...