Abstract The techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for  plastics injection molds  is analysed. Shells are obtained from models manufactured through rapid prototyping using the FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses and possible failures, by relating these features to the parameters of production of the shells with an electroforming equipment. Finally a core was tested in an  injection mold.  7101
Keywords: Electroplating; Electroforming; Microstructure; Nickel
 
1. Introduction
One of the most important challenges with which modern industry comes across is to offer the consumer better products with outstanding variety and time variability (new designs). For this reason, modern industry must be more and more competitive and it has to produce with acceptable costs. There is no doubt that combining the time variable and the quality variable is not easy because they frequently condition one another; the technological advances in the productive systems are going to permit that combination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of plastics injection, we arrive at the conclusion that, in fact, it takes less and less time to put a new product on the market and with higher levels of quality. The manufacturing technology of rapid tooling is, in this field, one of those technological advances that makes possible the improvements in the processes of designing and manufacturing injected parts. Rapid tooling techniques are basically composed of a collection of procedures that are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their application is not only included in the field of making plastic injected pieces [1], [2] and [3], however, it is true that it is where they have developed more and where they find the highest output.
This paper is included within a wider research line where it attempts to study, define, analyze, test and propose, at an industrial level, the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells, taking as an initial model a prototype made in a FDM rapid prototyping equipment.
It also would have to say beforehand that the electroforming technique is not something new because its applications in the industry are countless [3], but this research work has tried to investigate to what extent and under which parameters the use of this technique in the production of rapid molds is technically feasible. All made in an accurate and systematized way of use and proposing a working method.
2. Manufacturing process of an injection mold
The core is formed by a thin nickel shell that is obtained through the electroforming process, and that is filled with an epoxic resin with metallic charge during the integration in the core plate [4] This mold (Fig. 1) permits the direct manufacturing by injection of a type a multiple use specimen, as they are defined by the UNE-EN ISO 3167 standard. The purpose of this specimen is to determine the mechanical properties of a collection of materials representative industry, injected in these tools and its coMParison with the properties obtained by conventional tools.
Fig. 1. Manufactured injection mold with electroformed core.
The stages to obtain a core [4], according to the methodology researched in this work, are the following:
(a) Design in CAD system of the desired object.
(b) Model manufacturing in a rapid prototyping equipment (FDM system). The material used will be an ABS plastic.
(c) Manufacturing of a nickel electroformed shell starting from the previous model that has been coated with a conductive paint beforehand (it must have electrical conductivity).
上一篇:模具工业现状及发展趋势英文文献和中文翻译
下一篇:永磁性爬壁机器人英文文献和中文翻译

活塞环/气缸套在摩擦和磨...

有限元模拟在开模锻造中...

在线学习的概述英文文献和中文翻译

数字通信技术在塑料挤出...

CAE技术在车辆安全性应用英文文献和中文翻译

嵌入型锚在软硬海底的抓...

Moldflow软件在复杂的塑料外...

浅论职工思想政治工作茬...

酵母菌发酵生产天然香料...

上海居民的社会参与研究

STC89C52单片机NRF24L01的无线病房呼叫系统设计

基于Joomla平台的计算机学院网站设计与开发

从政策角度谈黑龙江對俄...

提高教育质量,构建大學生...

AES算法GPU协处理下分组加...

压疮高危人群的标准化中...

浅谈高校行政管理人员的...