Table 2
Material properties for mould and product
Carbon Steel (AISI 1050), mould    ABS Polymer, product
Density, ρ    7860 kg/m3    Density, ρ    1050 kg/m3
Young’s modulus, E    208 GPa    Young’s modulus, E    2.519 GPa
Poisson’s ratio, ν    0.297    Poisson’s ratio, ν    0.4
Yield strength, SY    365.4 MPa    Yield strength, SY    65 MPa
Tensile strength, SUTS    636 MPa    Thermal expansion, α    65 × 10−6 K−1
Thermal expansion, α    11.65 × 10−6 K−1    Conductivity, k    0.135 W/(m K)
Conductivity, k    49.4 W/(m K)    Specific heat, c    1250 J/(kg K)
Specific heat, c    477 J/(kg K)
S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259–267    263

the products. Fig. 8 shows nodes selected for plotting time
response graphs.
Figs. 9–17 show temperature distribution curves for dif-
ferent nodes as indicated in Fig. 8.
From   the   temperature   distribution   graphs   plotted   in
Figs. 9–17, it is clear that every node selected for the graph
plotted experiencing increased in temperature, i.e. from the
ambient  temperature  to  a  certain  temperature  higher  than
the ambient temperature and then remained constant at this
temperature for a certain period of time. This increase in tem-
 
Fig. 6. Loaded model for analysis of product.

contour plots of thermal or heat distribution at different time
intervals in one complete cycle of plastic injection molding.
For the 2D analysis of the mould, time response graphs
are plotted to analyze the effect of thermal residual stress on
 
perature was caused by the injection of molten plastic into
the cavity of the product.
After  a  certain  period  of  time,  the  temperature  is  then
further  increased  to  achieve  the  highest  temperature  and
remained  constant  at  that  temperature.  Increase  in  temper-
ature was due to packing stages that involved high pressure,
Fig. 7. Contour plots of heat distribution at different time intervals.
264    S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259–267
Fig. 11. Temperature distribution graph for Node 302.
Fig. 8. Selected nodals near product region for time response graph plots.

Fig. 12. Temperature distribution graph for Node 290.

which caused the temperature to increase. This temperature
remains constant until the cooling stage starts, which causes
reduction in mould temperature to a lower value and remains
at this value. The graphs plotted were not smooth due to the
absence  of  function  of  inputting  filling  rate  of  the  molten
 
Fig. 9. Temperature distribution graph for Node 284.
Fig. 10. Temperature distribution graph for Node 213.
 
plastic as well as the cooling rate of the coolant. The graphs
plotted only show maximum value of temperature that can
be achieved in the cycle.
The most critical stage in the thermal residual stress anal-
ysis is during the cooling stage. This is because the cooling
Fig. 13. Temperature distribution graph for Node 278.
上一篇:塑料注塑模具并行设计英文文献和翻译
下一篇:注塑模具钢研磨和抛光工序英文文献和翻译

移动码头的泊位分配问题英文文献和中文翻译

纤维素增强的淀粉-明胶聚...

多极化港口系统的竞争力外文文献和中文翻译

阻尼减震平台的设计英文文献和中文翻译

超精密自由抛光的混合机...

旋转式伺服电机的柔性电...

过程约束优化数控机床的...

上海居民的社会参与研究

提高教育质量,构建大學生...

压疮高危人群的标准化中...

基于Joomla平台的计算机学院网站设计与开发

酵母菌发酵生产天然香料...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

AES算法GPU协处理下分组加...

从政策角度谈黑龙江對俄...

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...