sd30=dtat/6 

sd29=h/2*(1-cos((180/dtat)* sd30)) 

sd26=2*dtat/6 

sd25=h/2*(1-cos((180/dtat)* sd26)) 

sd23=3*dtat/6 

sd22=h/2*(1-cos((180/dtat)* sd23)) 

sd20=4*dtat/6 

sd19=h/2*(1-cos((180/dtat)* sd20)) 

sd17=5*dtat/6 

sd16=h/2*(1-cos((180/dtat)* sd17)) 

sd10=dtat 

sd11=h 

/* Graph4(the displacement and angle of sine acceleration in rise travel) 

sd30=dtat/6 

sd29=h*((sd86/dtat)-(1/(2*pi))*sin(360*sd30/dtat)) 

sd26=2*dtat/6 

sd25=h*((sd3/dtat)-(1/(2*pi))*sin(360*sd26/dtat)) 

sd23=3*dtat/6 

sd22=h*((sd6/dtat)-(1/(2*pi))*sin(360*sd23/dtat)) 

sd20=4*dtat/6 

sd19=h*((sd8/dtat)-(1/(2*pi))*sin(360*sd20/dtat)) 

sd17=5*dtat/6 

sd16=h*((sd9/dtat)-(1/(2*pi))*sin(360*sd17/dtat)) 

sd10=dtat 

sd11=h*((sd11/dtat)-(1/(2*pi))*sin(360*sd10/dtat)) 

    In the same way, the displacement-angle relations of far stop travel, return travel and nearly stop travel, can be input. 

3.3. Sketch cam theoretical  curve 

By use of variable section sweep tool, each part of cam can be gotten which correspond to four motion stages, shown as Figure 3. Each trajectory for the sweep was fragmented arc on Front plane, which took half of base circle radius as its radius and cam angle as its central angle. Sweep’s section is a rectangle gone through the control point of sweep’s trajectory, which took cam’s width as its width and its length was associated with displacement line graph by Trajpar’s parameter in relations, so as to control cam profile.

By setting rise-travel parameter ‘tui’ and return-travel parameter ‘hui’, the systems can auto-chose corresponding displacement line graphs according to different motion laws, so as to get proper size’s cam section, furthermore realized 16 kinds of combined motion. So, during sweep, cam profile will change with follower’s displacement line graph. Sweep was pided into four parts (360°in total); the precise cam model could be built, as shown in Figure 3(b). 

    The relation’s details of rectangle section were shown in follow: 

if(tui==1) 

sd7=rb/2+evalgraph("Graph1",trajpar* dtat) 

endif 

…… 

In the same way, input the other section relations. Then follower, fixture, and so on, were parametrically modelled in sequence. It is necessary to think carefully their assembly relations about design place, shape and size, and to establish beforehand datum point and axis. 

 Fig.3.(a)Assemble        (b)connection           Fig. 4 (a)Trajectory; (b) cam; 

4. Virtual assembly of cam mechanism 

    New-built a assembly as follow: firstly, to insert the fixture using  the default method, secondly, to insert the follow by pin connected method which the fixture’s role axis aligned follower’s and pre-created datum point aligned each other, as shown in Fig.4 (a). 

5. Cam mechanism’s motion simulation 

    After connections’ definitions were completed, designer can add corresponding drive to them by the mechanical module. Designers choose “Application Program”-“Mechanism”, enter the mechanism module, as shown in Fig.4 (b). 

    To click “Drag" button, open dialog box, move follower’s height position and make its matching surface near cam’s matching surface, drag and rotate cam’s starting location which touched with follower, cam and follower’s location was adjusted. 

上一篇:单片机介绍英文文献和中文翻译
下一篇:模糊逻辑的机械手智能力/位控制英文文献和中文翻译

超高速行星齿轮组合中内...

预制板的连续组合双肋桥...

印刷用导电油墨和探索新...

高速切削加工组合机床英文文献和中文翻译

组合夹具系统的设计英文文献和中文翻译

凸轮机构的优化设计英文文献和中文翻译

浅论职工思想政治工作茬...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

AES算法GPU协处理下分组加...

压疮高危人群的标准化中...

上海居民的社会参与研究

基于Joomla平台的计算机学院网站设计与开发

酵母菌发酵生产天然香料...

提高教育质量,构建大學生...

浅谈高校行政管理人员的...

从政策角度谈黑龙江對俄...