sd30=dtat/6 

sd29=h/2*(1-cos((180/dtat)* sd30)) 

sd26=2*dtat/6 

sd25=h/2*(1-cos((180/dtat)* sd26)) 

sd23=3*dtat/6 

sd22=h/2*(1-cos((180/dtat)* sd23)) 

sd20=4*dtat/6 

sd19=h/2*(1-cos((180/dtat)* sd20)) 

sd17=5*dtat/6 

sd16=h/2*(1-cos((180/dtat)* sd17)) 

sd10=dtat 

sd11=h 

/* Graph4(the displacement and angle of sine acceleration in rise travel) 

sd30=dtat/6 

sd29=h*((sd86/dtat)-(1/(2*pi))*sin(360*sd30/dtat)) 

sd26=2*dtat/6 

sd25=h*((sd3/dtat)-(1/(2*pi))*sin(360*sd26/dtat)) 

sd23=3*dtat/6 

sd22=h*((sd6/dtat)-(1/(2*pi))*sin(360*sd23/dtat)) 

sd20=4*dtat/6 

sd19=h*((sd8/dtat)-(1/(2*pi))*sin(360*sd20/dtat)) 

sd17=5*dtat/6 

sd16=h*((sd9/dtat)-(1/(2*pi))*sin(360*sd17/dtat)) 

sd10=dtat 

sd11=h*((sd11/dtat)-(1/(2*pi))*sin(360*sd10/dtat)) 

    In the same way, the displacement-angle relations of far stop travel, return travel and nearly stop travel, can be input. 

3.3. Sketch cam theoretical  curve 

By use of variable section sweep tool, each part of cam can be gotten which correspond to four motion stages, shown as Figure 3. Each trajectory for the sweep was fragmented arc on Front plane, which took half of base circle radius as its radius and cam angle as its central angle. Sweep’s section is a rectangle gone through the control point of sweep’s trajectory, which took cam’s width as its width and its length was associated with displacement line graph by Trajpar’s parameter in relations, so as to control cam profile.

By setting rise-travel parameter ‘tui’ and return-travel parameter ‘hui’, the systems can auto-chose corresponding displacement line graphs according to different motion laws, so as to get proper size’s cam section, furthermore realized 16 kinds of combined motion. So, during sweep, cam profile will change with follower’s displacement line graph. Sweep was pided into four parts (360°in total); the precise cam model could be built, as shown in Figure 3(b). 

    The relation’s details of rectangle section were shown in follow: 

if(tui==1) 

sd7=rb/2+evalgraph("Graph1",trajpar* dtat) 

endif 

…… 

In the same way, input the other section relations. Then follower, fixture, and so on, were parametrically modelled in sequence. It is necessary to think carefully their assembly relations about design place, shape and size, and to establish beforehand datum point and axis. 

 Fig.3.(a)Assemble        (b)connection           Fig. 4 (a)Trajectory; (b) cam; 

4. Virtual assembly of cam mechanism 

    New-built a assembly as follow: firstly, to insert the fixture using  the default method, secondly, to insert the follow by pin connected method which the fixture’s role axis aligned follower’s and pre-created datum point aligned each other, as shown in Fig.4 (a). 

5. Cam mechanism’s motion simulation 

    After connections’ definitions were completed, designer can add corresponding drive to them by the mechanical module. Designers choose “Application Program”-“Mechanism”, enter the mechanism module, as shown in Fig.4 (b). 

    To click “Drag" button, open dialog box, move follower’s height position and make its matching surface near cam’s matching surface, drag and rotate cam’s starting location which touched with follower, cam and follower’s location was adjusted. 

上一篇:单片机介绍英文文献和中文翻译
下一篇:模糊逻辑的机械手智能力/位控制英文文献和中文翻译

超高速行星齿轮组合中内...

预制板的连续组合双肋桥...

印刷用导电油墨和探索新...

高速切削加工组合机床英文文献和中文翻译

组合夹具系统的设计英文文献和中文翻译

凸轮机构的优化设计英文文献和中文翻译

弹道修正弹实测弹道气象数据使用方法研究

适合宝妈开的实体店,适...

林业机械作业中的安全性问题【2230字】

浅谈动画短片《天降好运》中的剧本创作

淮安市老漂族心理与休闲体育现状的研究

小学《道德与法治》学习心得体会

组态王文献综述

大学生就业方向与专业关系的研究

人事管理系统开题报告

紫陵阁