毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
冷弯成形过程的数值模拟英文文献和中文翻译
abstract3D finite element analysis is employed to simulate a cold roll-forming process. Numericalresults of longitudinal strains and displacement trajectories are compared with experimen-tal results available in the literature. Through a parametrical study, significant impacts of theyield limit and the work-hardening exponent on the product quality are observed, whereasforming speed and friction at roll-sheet interface appear to play a minor role.© 2007 Elsevier B.V. All rights reserved. 1. IntroductionCold roll-forming process is an industrial process for manu-facturing long sheet metal products with constant sections.In this process, an originally plane sheet is transformed into adesired profile without a considerable change of sheet thick-ness through the action of a series of pairs of forming rolls.This kind of high-speed production process is well suited forthe manufacturing of long sheets to close tolerances withoutmuch handling.Hence, roll-forming is mainly characterised by a bending-type deformation, which is continuously changing as thematerial moves through the rolls. The deformation mayinclude longitudinal stretching and bending, transverse bend-ing and shear. More importantly, the process of deformationis quite complex, since it varies across the section. Thus thereare often undesirable strains generated in the sheet, and it israther difficult to control their magnitude so that the qualityof the section is not significantly affected both in cross-sectiongeometry and in longitudinal curvature. If a large number ofrolls are used in the tool design, the applied bending is verygradual and unwanted strains are reduced. However, due toeconomical constraints, the number of rolls must be min-imised in order to reduce the overall cost.51241
One must thereforetry to reduce tooling costs without compromising the sectionquality.Industrial practice largely relies on empiricismand heuris-tic rules for the design of roll-forming.Unfortunately, there arefewdesign rules that are universally accepted, since thewholedesign process of roll-forming is rather subjective. Workshoptests using a trial-and-error method is the common practicebut it inevitably requires a large amount ofmaterial and time.Under such circumstances, numerical simulation appears tobe an attractive alternative, since it allows reducing the timenecessary for roll pass design of new products.Different approaches have been proposed for the mod-elling of the forming process. Based on a hypotheticaldeformed sheet surface; i.e. a predefined geometry, simplifiedapproaches, which do not require an important effort of com-putation, can be developed. For example, Kiuchi (1973) have suggested a sinusoidal “shape function” to describe themiddlesheet surface between the roll stands for the formation of a cir-cular section. Alternatively, Nefussi and Gilormini (1993) havepreferred a Coons patch technique for the middle deformedsheet surface. Towards a more practical solution, which canbe applied for complex sections, the finite element methodhas recently obtained increasing attention in the simulationof cold roll-forming process. From the assumption on contin-uously moving rigid surfaces between two stations, Brunet etal. (1996) have proposed an elastic–plastic finite element tech-nique,where a 2D plane stress analysiswithmoving boundaryconditions is combined with a 3D shell analysis. On the otherhand, a combined 2D and 3D analysis has also been employedby Hong et al. (2001), where the assumption of a uniform ofstrain-rate over the cross section was adopted. For a morerealistic prediction and at the expense of increasing computa-tional effort, a 3D analysis has been attempted by (Heislitz etal., 1996) in the prediction of strain distributions, sheet geom-etry during and after the forming process. Besides the finiteelementmethod, the finite stripmethod has also been appliedfor the study of roll-forming process (Han et al., 2002).In this study, based on an in-house software namedMetafor (Ponthot, 1995), 3D-finite element simulation will beused to analyse the cold forming process. Our attention ismainly paid to the development of strains, which is likely ameasure of forming severity and potential forming problems.Indeed, if the legs of a profile are bent step-by-step from onestand to another, the edges travel a longerway than theweb ofthe profile. This leads to higher values of strains and stressesin the edges.
共6页:
上一页
1
2
3
4
5
6
下一页
上一篇:
三维有限元数值模拟深基坑防渗降水英文文献和中文翻译
下一篇:
电气系统的可编程序控制器英文文献和中文翻译
过程约束优化数控机床的...
微注塑成型工艺参数对成...
数控机床制造过程的碳排...
遗传算法的热水器水箱盖...
拉伸冲压成形极限列线图...
数据库开发过程英文文献和中文翻译
注射成型过程中的聚丙烯...
淮安市老漂族心理与休闲体育现状的研究
紫陵阁
小学《道德与法治》学习心得体会
人事管理系统开题报告
大学生就业方向与专业关系的研究
适合宝妈开的实体店,适...
浅谈动画短片《天降好运》中的剧本创作
林业机械作业中的安全性问题【2230字】
弹道修正弹实测弹道气象数据使用方法研究
组态王文献综述