Fig. 6. Motion of macro and micro mechanisms in the first experiment

Fig. 7. The tracking error of weld torch in the first experiment

Fig. 8. Motion of macro and micro mechanisms in the second experiment

Fig. 9. The tracking error of weld torch in the second experiment

6 Conclusions

In this paper, a welding robot was designed for large scaled workpieces. The two groups of macro and micro translational mechanisms provide large travel with high positioning precision for weld manipulation. The given welding trajectory can be grossly taught and planned in Cartesian space, and then the variables of the joints are planned in joint space via the inverse kinematics of the welding robot. The motion control of micro and macro joints is presented, by which the precision was compen- sated by the visual servo of micro joints based on feed back of visual sensing. The performance of seam tracking control of the welding robot is robust to the teaching trajectory in advance. Experimental results verified the effectiveness of the mechanisms of welding robot and the control system.

Acknowledgement

The authors would like to thank the National High Technology Research and Develop- ment Program of China for supporting this work under grant 2006AA04Z213. We would also like to thank China Postdoctoral Science Foundation (No. 20070410463) for their support.

References

1. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)

2. Bolmsjö, G., Olsson, M., Cederberg, P.: Robotic arc welding - trends and developments for higher autonomy. The Industrial Robot 29(2), 98–104 (2002)

3. Wang, Y., Tan, M., Jing, F., et al.: Kinematic analysis and application of a huge workpiece handling system based on multi-robot coordination. Robot 24(5), 451–455 (2002)

4. Lee, J., Kim, J., Kim, H., et al.: Development of multi-axis gantry type welding robot sys- tem using a PC-based controller. In: IEEE International Symposium on Industrial Electron- ics, 2001. Proceedings, vol. 3, pp. 1536–1541 (2001)

5. Ou, G., Zhang, H., Liu, G., et al.: Seam tracking control system of pedrailed intelligent arc welding robot. Robot 25(5), 448–451 (2003)

6. Bahrami-Samani, M., Agahi, M., Moosavian, S.A.A.: Design and analysis of a welding ro- bot. In: IEEE International Conference on Automation Science and Engineering, 2006, pp. 454–459 (2006)

7. Xu, H., Jia, P.: RTOC: A Rt-Linux based open robot controller. In: 2006 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems, pp. 1644–1649 (2006)

8. Dai, W., Kampker, M.: PIN-a PC-based robot simulation and offline programming system using macro programming techniques. In: The 25th Annual Conference of the IEEE Indus- trial Electronics Society. Proceedings, vol. 1, pp. 29, 442–446 (1999)

Chapter 4

Intelligent Welding Robot Path Planning

Xue Wu Wang, Ying Pan Shi, Rui Yu and Xing Sheng   Gu

Abstract Spot welding robots are now widely used in manufacturing industry, and usually many welding joints have to be traversed in welding process. The path planning for welding robot is based on engineering experiments where teaching and playback were applied in most cases. It usually takes the engineer much time to obtain desired welding path, and sometimes, it is difficult to find an optimal path for spot welding robot especially when the number of welding joints is huge. Hence, welding robot path planning has become one key technology in this field. Intelli- gent optimization algorithm is beneficial for realizing effective welding robot path planning. To this end, particle swarm optimization (PSO) algorithm was improved first. Then, the improved PSO algorithm was applied for path planning of welding robot, and the simulation results show the effectiveness of the  method.

上一篇:传感元件英文文献和中文翻译
下一篇:轴承的选用英文文献和中文翻译

双足步行机器人英文文献和中文翻译

脑电图像P300机器人手臂运...

机器学习英文文献和中文翻译

机器人运动模糊逻辑控制英文文献和中文翻译

机器人控制系统英文文献和中文翻译

水下机器人AUV叶片冷锻钉...

机器人学入门力学与控制英文文献和中文翻译

浅论职工思想政治工作茬...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

酵母菌发酵生产天然香料...

基于Joomla平台的计算机学院网站设计与开发

从政策角度谈黑龙江對俄...

上海居民的社会参与研究

AES算法GPU协处理下分组加...

压疮高危人群的标准化中...

提高教育质量,构建大學生...

浅谈高校行政管理人员的...