Abstract: In traditional engine setups Belt Drive Systems (BDS) are in charge of power transmission from the crankshaft to the accessories. They are complex and critical dynamic mechanisms, involving contact mechanics and vibration phenomena. The hybridization of vehicles has increased the severity of the operating conditions of these systems that have become even more critical. The traditional alternator was substituted by a Belt-Starter Generator (BSG), an electric machine that can power the BDS in particular operating conditions to improve the Internal Combustion Engine (ICE) performance or to allow regenerative braking. The aim of the present work is to describe the design and the main characteristic of a test rig conceived to investigate in laboratory environment on the behaviour of belt drive systems in dynamic conditions. Two permanent magnet electric motors are used to replicate the dynamic behavior of crankshaft and BSG in a realistic, though controlled and repaetable, manner.68696

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Automotive Control, Hybrid Vehicles, Belt Drive Systems, Dynamic Modeling, Front-End Accessory Drives, Model Based Control

1. INTRODUCTION

 

Belt Drive Systems (BDS) or Front-End Accessory Drives (FEAD) constitute the traditional power transmission mechanism to power the main internal combustion ancil- liaries such as the alternator, water pump and air con- ditioning pump. The torque generated by the Internal Combustion Engine (ICE) is transmitted by means of a serpentine belt that wraps around the driving and driven accessory pulleys of the drive systems.

BDS represent traditionally a complex and critical vehicle subsystem because of the performance specifications that need to be fulfilled. It usually in the severe ambient condi- tions of the engine compartment and is subject to highly dynamic excitations coming from the crankshaft harmon- ics. These harmonic excitation ,together with the inertia of the accessories (mainly the alternator), leads to vibrations of the belt and high tension fluctuations that can cause slippage and noise. To reduce these excitations a number of solutions have been developed including decoupling, filtering and overruning pulleys. The analysis of these phenomena led to the development of refined models of the belt pulley contact mechanics together with the definition of serpentine multi-pulley models to predict the dynamic response of serpentine belt-drive systems. A literature review shows that several research activities were carried out addressing separately the belt pulley mechanisms, see Bechtel et al. (2000), Rubin (2000), Hansson (1990), and the dynamic behavior of the transmission system, see Ul- soy et al. (1985), Hwang et al. (1994), Leamy and Perkins (1998). Only few attempts were done in the last 10  years

 

to bridge the gap between research on contact mechanics and dynamic analysis by Leamy and Wasfy (2002), Leamy (2003), Kong and Parker (2003). Tonoli et al. (2006) an- alyzed the effect of shear deflection of the belt on the rotational dynamic behavior of the transmission.

Additionally, the advent of hybrid technologies has seen the rise of a class of micro-hybrids that changes the oper- ating modes of the traditional belt drive systems. In this paradigm, the alternator is substituted with a Belt Starter Generator (BSG), an electrical machine able to work both as motor and as generator, causing a tight/slack span alternation when activated. The use of a BSG requires the introduction of a tensioning device able to keep the belt tension inside a safe range while preventing slippage facing the severe working conditions, see Cariccia et al. (2013). Several solutions have been proposed to satisfy this requirement, such as doble tensioners, decoupling tension- ers and active electromechanical or hydraulica tensioners. With the addition of active devices, such as the BSG and complex tensioners, the intelligent BDS (iBDS) becomes a complex and challenging mechatronic system.

上一篇:轴承的选用英文文献和中文翻译
下一篇:压力阀迷宫通道流量特性英文文献和中文翻译

多极化港口系统的竞争力外文文献和中文翻译

多变土体中桩靴稳定性英文文献和中文翻译

悬架系统的多体动力学模...

监测和诊断多通道非线性...

多件式模具设计英文文献和中文翻译

船舶设计多维问题的元建...

SWATH的参数化设计和多目标...

酵母菌发酵生产天然香料...

上海居民的社会参与研究

浅论职工思想政治工作茬...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

AES算法GPU协处理下分组加...

从政策角度谈黑龙江對俄...

压疮高危人群的标准化中...

提高教育质量,构建大學生...

浅谈高校行政管理人员的...

基于Joomla平台的计算机学院网站设计与开发