In the course of obtaining the results just described, various network topolo- gies and incremental evolution approaches were investigated (for details see [29]). Without incorporating some domain knowledge into the evolutionary process, we were unable to evolve successful controllers. Domain knowledge was introduced in the form of the network topology, which neglects any coupling between   the

Fig. 3. Trajectory of a modular network controller after complet- ing 1100 timesteps of the waypoint

task. Fig. 4. Plot of the commanded speed vs the

real helicopter speed for the best   controller

evolved with the velocity task.

lateral, longitudinal, and vertical axes. Evolving the yaw controller first was also crucial for the evolutionary process, confirming the findings of other researchers about the nature and benefits of incremental evolution.

5 Future work

In the immediate future we will implement and evaluate the approach of data collection, state estimation, system identification, and controller design on our model helicopter.

The first step will concentrate on the validation of the unscented Kalman filtering approach; the maximum update frequency and also the numerical ro- bustness need to be determined. The performance of the filter algorithm in terms of noise and drift also needs to be tested to ensure that the data will be adequate for control.

Model identification based on recorded flight data will constitute the next step. By its very nature the system identification technique will provide us with a quantitative estimation of the error between the simulated and real trajectory. We expect that the simulator will not be able to predict the trajectory of the real helicopter for more then a short period of time, due to the accumulation of error. However, the dynamic response of the model to the control input, which is what is needed to evolve a controller, will always resemble that of the real helicopter.

Artificial evolution will then be applied to produce controllers tailored to our helicopter. Several controllers chosen from those with good fitness will than be evaluated directly on the real helicopter.

Finally, a controller will be implemented on board the helicopter and the sensor to motor action loop will be closed, allowing us to test autonomous flight. The work will then proceed with the investigation of strategies for achieving flocking; these will initially be based on the classical rules of cohesion, separation,

and velocity matching.文献综述

6 Concluding  remarks

The work presented here is clearly still in its early stages, but is following a clear path supported by existing research findings. The results achieved in the simulation and testing carried out so far are encouraging; we recognise however that porting the results obtained in simulation to a real system is very often problematical.

References

1. Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. In: Proceedings of the Conference on Computer Graphics (SIGGRAPH). Volume 21:4. (1987) 25–34

2. Mataric, M.: Interaction and intelligent behavior. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1995)

3. Kelly, I., Keating, D.: Flocking by the fusion of sonar and active infrared sensors on physical autonomous mobile robots. In: Proceedings of The Third Int. Conf. on Mechatronics and Machine Vision in Practice. Volume 1. (1996) 1–4

4. Welsby, J., Melhuish, C.: Autonomous minimalist following in three  dimensions: A study with small-scale dirigibles. In: Proceedings of Towards Intelligent Mobile Robots Manchster. (2001)

上一篇:柴油机连杆英文文献和中文翻译
下一篇:PLC工业机器人英文文献和中文翻译

AngularJS技术介绍英文文献和中文翻译

开关电源水冷却系统英文文献和中文翻译

减数分裂和基因重组英文文献和中文翻译

太阳能最大功率点追踪和...

移动码头的泊位分配问题英文文献和中文翻译

虚拟船舶装配集成建模方...

中学生科学探究中对等论...

提高教育质量,构建大學生...

压疮高危人群的标准化中...

浅论职工思想政治工作茬...

上海居民的社会参与研究

AES算法GPU协处理下分组加...

浅谈高校行政管理人员的...

从政策角度谈黑龙江對俄...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

酵母菌发酵生产天然香料...

基于Joomla平台的计算机学院网站设计与开发