qmN  ¼ const: (13)

Since on scale-up, constant ¯eT leads to constant N, obtaining equal mixing time appears to be feasible. How- ever, because Po and D are large, N is limited by the practi- cal level of ¯eT that can be used economically and hence, times can be many orders of magnitude longer than in tur- bulent flow. The optimum helical ribbon configuration, which determines the constant in Eq. (13), is dependent on the precise geometry [23].

An approach, which offers even more geometrical possi- bilities and appears to be particularly flexible, combines two co-axial stirrers on the same shaft. One of these is of large diameter rotating slowly, typical of those used for high vis- cosity blending, and the other of small diameter rotates much faster, either co-rotating (which gives the most ener- gy-efficient blending) or counter-rotating (which is most effective where a particulate phase needs to be broken up and dispersed). A wide variety of combinations of this type have recently been studied in depth  both experimentally and using advanced CFD techniques [30, 31]. Again, such complex co-axial stirrer systems are expensive.

A particularly difficult blending problem arises with shear thinning fluids exhibiting a yield stress ty. These fluids may be found wherever structure can develop, either in the fluid (food viscosifiers such as soluble Xanthan gum) or due to a second phase (high-concentration fine particle or mycelial suspensions, small drop size emulsions, etc). In such fluids,

a cavern develops [32] (a region of motion near the impeller while outside it, the fluid is stagnant (Fig. 7)). Generally, the Re determined via Eq. (7) shows that flow is transitional or turbulent. Thus, the STR should be baffled with the cavern size determined by [32] (another influencial paper [11])

ðDC=DÞ3  ¼ f1=p2ðHC=DC  þ 0:33ÞgPoðrL N2D2=ty Þ       (14)

where DC and HC are the diameter and height of the cavern (assumed cylindrical, HC /DC = ~0.4 to ~0.6) [30]. Eq. (14) suggests that dual impellers, with high Po and large D/T, are much more energy efficient in achieving bulk motion throughout a vessel and that scale-up at constant tip speed is an appropriate rule. If, with the cavern filling the vessel on small scale, scale-up is done at constant W kg–1 as it often is (see below), full vessel motion is obtained.

Figure 6. Schematic of the Sumitomo Maxblend' impeller (modified from [27]).

Figure 7.  Streak  photo  of  a  cavern  in  a  0.17 %  Carbopol    solution,

ty = ~5 Pa.

4.1.2 Chemical Reactions

Because reaction times are scale-independent, can vary by many orders of magnitude from milliseconds or less to hours and each reaction scheme is unique, devising experimental protocols to help the practitioner design STRs is most impor- tant. When the mixing time is fast compared to the reaction time, agitation intensity is unimportant and the overall reac- tion is entirely dominated by the kinetics. On the other hand, since the bulk mixing time increases with scale, in some cases, the time is comparatively short at the small scale, but becomes longer at the large. This phenomenon is called mac- romixing. For such cases, very few experimental or modeling studies have been undertaken. Two experimental studies backed by some theoretical concepts have shown that scale- up of semi-batch competitive reactions requires constant agitation speed N. Practically, this is not feasible and any experimental scale-down protocol should be undertaken in geometrically similar equipment and must use agitation speeds at the bench and pilot scale similar to those giving viable ¯eT values at the commercial scale [33, 34].

If the reaction time is very short, then it is the mixing

上一篇:CAD/CAM模具技术课程教学改革英文文献和中文翻译
下一篇:便携式电子硫化机效率英文文献和中文翻译

双位错叶片涡轮桨搅拌釜英文文献和中文翻译

搅拌釜反应器英文文献和中文翻译

单螺带桨叶与双螺带桨叶...

固液搅拌罐的CFD模拟英文文献和中文翻译

磁力搅拌器英文文献和中文翻译

连续搅拌釜反应器系统英文文献和中文翻译

搅拌釜内混合液体的分离...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...

酵母菌发酵生产天然香料...

压疮高危人群的标准化中...

提高教育质量,构建大學生...

基于Joomla平台的计算机学院网站设计与开发

AES算法GPU协处理下分组加...

上海居民的社会参与研究