Gorinevsky, D. M., Formalsky, A. M., & Schneider, A. Yu. (1997). Force control of robotics systems. CRC Press LLC.

Ilon, B. E. (1975). Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base, US Patent   3876255.

Martynenko, Yu. G., & Formal’skii, A. M. (2007). On the motion of a mobile robot with roller-carrying wheels. Journal of Computer and Systems Sciences International, 46(6), 976–983.

Muir, P. F., & Neumann, C. P. (1990). Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot. Autonomous robot vehicles (pp. 25–31). New-York: Springer.

Tsai, C. -C., Tai, F. -C., Lee, Y. -R. (2011). Motion controller design and embedded realization for mecanum wheeled omnidirectional robots. In Proceedings of the 8th World Congress on Intelligent Control and Automation (pp. 546–551). Taipei,  Taiwan.

Viboonchaicheep, P., Shimanda, A., & Kosaka, Y. (2003). Position rectification control for mecanum wheeled omni-directional vehicles. In Proceedings of the 29th Annual Conference of IEEE Industrial Electronics Society (pp. 854–859). Roanoke,  USA.

Wampfer, G., Salecker, M., & Wittenburg, J. (1989). Kinematics, dynamics, and control of omnidirectional vehicles with mecanum wheels. Mechanics Based Design of Structures and Machines, 17(2), 165–177.

Zimmermann, K., Zeidis, I., & Behn, C. (2009). Mechanics of terrestrial locomotion. With a focus on nonpedal motion systems. Berlin: Springer.

Zimmermann, K., Zeidis, I., & Abdelrahman, M. (2014). Dynamics of mechanical systems with mecanum wheels. In Applied Non-Linear Dynamical Systems (pp. 271–279). Wien, New York: Springer.

Adv. Manuf. (2016) 4:363–370 DOI 10.1007/s40436-016-0164-3

Accuracy analysis of omnidirectional mobile manipulator with mecanum wheels

Shuai Guo1  •  Yi Jin1  •  Sheng Bao1  •  Feng-Feng  Xi2

Received: 10 January 2016 / Accepted: 11 November 2016 / Published online: 9 December  2016

© Shanghai University and Springer-Verlag Berlin Heidelberg   2016

Abstract This article is based on  the omnidirectional mobile manipulator with mecanum wheels built at Shang- hai University. The article aims to find and analyze the parameters of kinematic equation of the omnidirectional system which affects its motion accuracy. The method of solving the parameter errors involves three phases. The first step is equation operation to achieve the equation of rela- tive errors. The second step is to obtain the displacement errors of the system via experiment and combine the error results with kinematic equation deduction to solve the geometric parameter errors in two methods. The third step is to verify its validity via comparing experiments. We can then revise its kinematics equation  afterwards.

Keywords Mecanum wheel · Displacement error · Monte Carlo analysis · Interval analysis

1 Introduction

Recently, with the development of industrial robots, the mobile robots have been used in various industries. Compared to traditional mobile robots, the omnidirec- tional mobile robots have a broad application prospect in aerospace and other fields, as it can move in any direction and    its    turning    radius    can    be    zero.       Mecanum

omnidirectional mobile platform is a popular omnidirec- tional mobile robot. It can flexibly complete various tasks in  crowded space.

The mobile platform built for riveting the rocket skin is shown in Fig. 1, which includes a mecanum omnidirec- tional mobile platform, laser sensors, a manipulator with six degrees of freedom. In order to make the mobile platform move precisely, we need to revise its movement equation. Muir and Neuman [1] have developed a kine- matic model of mecanum robot using  matrix  theory. Wang and Chang [2] carried out error analysis interns of distribution with four mecanum wheels. Shimada et al. [3] introduced a position corrective feedback control method using a vision sensor on mecanum-wheel omnidirectional vehicles. Qian et al. [4] developed a more detailed anal- ysis on the installation angle of roller. This paper does a further study from the perspective of the deformation  of the roller and provides two methods to revise its move- ment equation.

上一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
下一篇:高填充聚苯硫醚变温模具控制英文文献和中文翻译

移动码头的泊位分配问题英文文献和中文翻译

纤维素增强的淀粉-明胶聚...

多极化港口系统的竞争力外文文献和中文翻译

阻尼减震平台的设计英文文献和中文翻译

超精密自由抛光的混合机...

旋转式伺服电机的柔性电...

过程约束优化数控机床的...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

压疮高危人群的标准化中...

提高教育质量,构建大學生...

AES算法GPU协处理下分组加...

浅谈高校行政管理人员的...

上海居民的社会参与研究

基于Joomla平台的计算机学院网站设计与开发

从政策角度谈黑龙江對俄...

酵母菌发酵生产天然香料...

浅论职工思想政治工作茬...