detecting objects of  interest  that  may  be  moving  at  • Systems which detect objects of interest only while times  and  stationary  at other times. they are moving. Once objects of interest stop, they

This  research  goes  beyond  merely  detecting  the become invisible to the motion detection   scheme. presence  of an object. We also connect the  detection • Systems  which  function  properly  only  when  the module  to other important  sensory components  of  a camera  is  either   stationary   or  moving,  but  not vision-based robot control scheme.   Particularly both.   To   the   contrary,   our   system    generally significant is the ability to find landmarks on   objects operates  under  static  camera  conditions,  but also of interest  and to know about the projected  shape  of allows the freedom  of visually servoing an  eye-in- objects.  In addition,  tracking  techniques  are used to hand  system based  upon  target location.

monitor objects without human intervention.  Our  • Systems  which  cope  with  a  single  moving  target, solution    to    the    tracking    problem    follows  the even   though   several   application   areas  involve controlled  active vision  framework,'  which  avoids a images with several targets.

heavy  reliance  on  a priori  information  through  the     • Systems  which  assume  that  a  moving  object  is a use  of  optical  flow. Optical  flow is induced  by any rigid  body.  Further  assumptions  may  include    a combination  of camera  or  object motion. specific pattern of motion for the object of  interest.

The  primary   contribution   of  this  research   is  a

complete software and hardware implementation of our detection framework. In the process of con- structing this system, we have selected and modified computer vision techniques that are  appropriate  to the visual detection problem. Many of the techniques used by our framework (e.g. frame-differencing) have also appeared in similar forms in existing research, which is a demonstration of their usefulness. Our solution to the detection problem is innovative in the way in which it has uniquely combined these techniques into a general framework that can be directly applied to real-world situations. We have made modifications to these techniques where necessary, and we have also incorporated our own ideas where the existing literature was lacking (e.g. dynamic segmentation domains). Finally, we have customized the theory to the specihc industrial needs of robotics. This has demonstrated that our frame- work can provide precisely the type of information required to manage effectively a situation requiring visual detection. Results from experimentation with our visual servoing systems show the potential of our approach  under  general conditions.

上一篇:草莓自动包装系统英文文献和中文翻译
下一篇:剪叉式升降台驱动的解决方法英文文献和中文翻译

双足步行机器人英文文献和中文翻译

脑电图像P300机器人手臂运...

机器学习英文文献和中文翻译

机器人运动模糊逻辑控制英文文献和中文翻译

机器人控制系统英文文献和中文翻译

水下机器人AUV叶片冷锻钉...

机器人学入门力学与控制英文文献和中文翻译

AES算法GPU协处理下分组加...

酵母菌发酵生产天然香料...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

基于Joomla平台的计算机学院网站设计与开发

浅论职工思想政治工作茬...

压疮高危人群的标准化中...

浅谈高校行政管理人员的...

提高教育质量,构建大學生...

上海居民的社会参与研究