3。4。 Optimization algorithm: hybrid Taguchi-random coordinate search algorithm

To find the optimal value of each step, an optimization algorithm is required。 The objective function used in this paper is com- posed of an obvious equation, but it is too complex to analyze the function analytically。 This type of function is treated as a black- box function [20]。 To optimize the black-box function, derivative-free optimization (DFO) algorithms such as genetic algorithms (GA), simulated annealing (SA), or pattern search optimization (PSO) are applied [21]。 However, these methodologies are limited in that they sometimes cannot find global optimal points。 Rios and Sahinidis [21] suggest that a better solution to this kind of problem may be a combination of two algorithms。 Thus, the hybrid Taguchi-random coordinate search algorithm (HTRCA) is ap- plied [22]。 HTRCA combines the Taguchi method (TM) with the random coordinate search algorithm (RCA) to find the optimal solution  of  the  objective functions。

4。 Case studies

This section analyzes a number of cases that were investigated with the developed algorithm to validate the method。 For a performance comparison, the conventional method that minimizes  tracking error  is used。 The input  data set of the  given  points and their intervals is controlled for unprejudiced comparison。 The method minimizes the tracking error of the given data set and finds the optimal mechanism。 Moreover, the method developed in this paper derives the optimal mechanism to minimize the objective function with the reference slope and its change in angle of slope, which are estimated from the given data set。

4。1。 Case 1–1: type-I (equal intervals)

The  desired trajectory  of  the first  case is a mathematical  ellipse described  as follows:

1000 coupler points were chosen to identify the optimal solution that can trace an ellipse with a = 100 and b = 50。 Because the purpose of this case study is to find the shape and size of the trajectory, the position variables x0 and y0 are not needed。 Therefore, for this problem,

Target curve:

Cx;D  ¼ 100 cos θ ð11Þ

Cy;D ¼ 50 sin θ ð12Þ

θ ¼ i=1000; i ¼ 1; …; 1000

Constraint conditions: Desired shape: Type-I

Xsize ∈ ð 0; 500 ]

½ l2      l3      l4 ]=l1 ∈ ð 0; 10 ]

。 lcx       lcy 。=l1  ∈ ½—10; 10]

4。2。 Case 1–2: type-I (variable intervals)

This case is also an ellipse described by Eq。 (10)。 In some real situations, the velocity of each section needs to be considered。 Therefore, the velocity profile of the coupler points is modified from the first case。 The other conditions are the same。 For this problem,

Target curve:

Constraint conditions: Desired shape: Type-I

Xsize ∈ ð 0; 500 ]

½ l2      l3      l4 ]=l1 ∈ ð 0; 10 ]

。 lcx       lcy 。=l1  ∈ ½—10; 10]

4。3。 Case 2–1: type-III (equal interval)

The desired trajectory of case 2 looks like a crescent, as shown in Fig。 7 (A)。 The desired velocity in all sectors is constant。 For this  problem,  the target  curve  and constraint conditions  are  as follows。

Target curve:

The value of parameter composing the shape of the desired trajectory is demonstrated in Fig。 7(A)。 1000 coupler points  in  total are  positioned equidistantly。

上一篇:双位错叶片涡轮桨搅拌釜英文文献和中文翻译
下一篇:风冷双回路螺杆冷水机组英文文献和中文翻译

养老机构医疗服务文献综述和参考文献

模糊PLC系统的伺服机构英文文献和中文翻译

曲柄滑块机构英文文献和中文翻译

连杆机构英文文献和中文翻译

双曲柄环板式针摆线齿轮...

深海调查绞车牵引机构和...

并联组合凸轮机构设计英文文献和中文翻译

酵母菌发酵生产天然香料...

从政策角度谈黑龙江對俄...

压疮高危人群的标准化中...

基于Joomla平台的计算机学院网站设计与开发

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...

提高教育质量,构建大學生...

上海居民的社会参与研究

STC89C52单片机NRF24L01的无线病房呼叫系统设计

AES算法GPU协处理下分组加...