compliant   surface   and   a   force   control   scheme   is   needed  to

 guarantee good system performance。 Therefore, a force sensor is needed  to  measure  these  contact  forces。  Disturbance  observers

 can be employed in these applications when there is no sensor available for  measuring  torques  and forces。  For instance,  distur-

 bance  observers  have  been  employed  successfully  in sensorless

 force control (Eom, Suh, Chung, & Oh, 1998; Katsura, Matsumoto, & Ohnishi, 2003; Lee,  Chan,  &  Mital,  1993;  Shimada,  Ohishi,  Kumagai, &   Miyazaki,   2010)。   Another   potential   application   of    disturbance

observers can be in micro/nano manipulation tasks, e。g。, microinjec- tion to introduce foreign materials into biological cells (Tan, Sun, Huang, & Chen, 2008), where there is a lack of small enough force sensors with good precision and signal to noise ratio (Rakotondrabe, Clevy, Rabenorosoa, & Ncir,  2010)。

Recently, a new system has been developed to teach motion to robots in order to improve their dexterity (Katsura, Matsumoto, & Ohnishi, 2010)。 The so-called shadow robot system consists of two identical robots。 The robots are controlled by bilateral acceleration control schemes based on a disturbance observer。 One  robot is guided by a human operator in teaching motion mode and the other robot is unconstrained and imitates the motion of the constrained robot with the same position, velocity and acceleration。 It is desired that the human operator’s pure force is extracted from the con- strained robot。 In order to find the operator’s force, a disturbance observer is employed to estimate the disturbance forces such as friction and gravity in the unconstrained robot。 The  disturbance forces acting on the constrained and the  unconstrained  robots  are the same。 The human operator’s force is then estimated by sub- tracting the disturbance forces acting on the unconstrained robot from the total force in the constrained robot。 As a result, the shadow robot system observes the human force in the presence of gravity and friction without a need for force sensors。 Lastly, industrial  robots

 employ fault detection systems in order to determine if a fault, such as a collision or an abrupt increase in reaction forces, has occurred in the system。 Disturbance observers have been used  for  fault detec- tion in a number of  robotic applications (Chan, 1995;  Ohishi & Ohde, 1994; Sneider & Frank, 1996)。 Table 1 summarizes the most important  applications  of disturbance  observers  in robotics。

A considerable part of the existing literature on disturbance observer design for robotic applications uses linearized models or linear system techniques (Bickel & Tomizuka, 1995; Kim & Chung, 2003; Komada, Machii, & Hori, 2000; Liu & Peng, 2000)。 In order to overcome the linear disturbance observer limitations for the highly nonlinear and coupled dynamics of robotic manipulators, Chen, Ballance, Gawthrop, and O’Reilly (2000) proposed a general nonlinear disturbance observer structure for nonlinear robotic manipulators。   Using   Chen   et   al。   NDOB,   the   observer   design

problem reduces to finding an observer gain matrix such that disturbance tracking is achieved。 However, Chen et al。 could find

 such  a  gain matrix for a  2-link planar manipulator with    revolute

 joints。 Later, Nikoobin et al。 generalized Chen’s solution to n-link

上一篇:对象的创建和生命周期英文文献和中文翻译
下一篇:一般测量系统英文文献和中文翻译

双足步行机器人英文文献和中文翻译

脑电图像P300机器人手臂运...

机器学习英文文献和中文翻译

机器人运动模糊逻辑控制英文文献和中文翻译

机器人控制系统英文文献和中文翻译

水下机器人AUV叶片冷锻钉...

机器人学入门力学与控制英文文献和中文翻译

压疮高危人群的标准化中...

AES算法GPU协处理下分组加...

浅谈高校行政管理人员的...

提高教育质量,构建大學生...

基于Joomla平台的计算机学院网站设计与开发

STC89C52单片机NRF24L01的无线病房呼叫系统设计

浅论职工思想政治工作茬...

酵母菌发酵生产天然香料...

上海居民的社会参与研究

从政策角度谈黑龙江對俄...