Fig。 11 (top) presents the wave train of the so called New Year Wave  recorded in the North Sea and  simulated in the wave tank using the above introduced modified approach。 This rogue wave with an unusual Hmax/Hs ratio of 2。15 is applied to both the experimental and nu- merical investigation of rogue wave impact on the struc- tural (splitting) forces of a semisubmersible (Fig。 11, Clauss et al。 (2003b))。 Wave sequences calculated by the modified non-linear approach have also been  suc-

New Year Wave

200 250 300 350 400 450 500

corresponding splitting force

Fig。 11: Top: comparison of recorded New Year Wave and wave tank simulation (scale 1:81)。 Bottom: mea- sured and calculated splitting forces of the semisub- mersible due to the rogue wave impact (all data pre- sented as full scale data)。

cessfully applied to the investigation of rogue wave im- pacts on the vertical bending moments of a stationary crane vessel (Clauss et al。 (2003a)) and an FPSO ship (Clauss et al。 (2004b))。

Experimental investigation of intact sta- bility

For the experimental investigation of intact stability with regard to both extreme and resonance phenom- ena the wave train as the beginning of the cause re- action chain can be directly compared to the reaction of the cruising ship since all time series are calculated resp。 measured in the moving reference frame of the ship model。

For controlled capsizing tests (Clauss and Hennig (2003)) we generate a regular wave with an embedded ”Three Sisters wave” sequence at a moving reference frame。 Fig。 12 shows a wave packet within a regular wave measured at a stationary wave probe close to the wave board (x = 297。8 m, model scale 1:34)。 It is trans- formed to the position of the cruising ship。 As shown in Fig。 12 this resulting wave sequence is quite regular and contains the target ”Three Sisters wave” at the lo- cation of interaction with the cruising ship。 Thus, high roll angles (lower diagram) can be induced by generat- ing tailored moving reference frame wave trains deter- ministically。

Numerical predictions can also be directly compared to model tests applying the following scheme: The wave train used in the numerical simulation for assessing ship safety is given as full scale target wave train (Fig。 13 top) and transformed to model scale (1:34)。 Now the modified non-linear approach is applied to obtain the wave train at the position of  the  wave  maker。 Thus the corresponding control signal for driving the wave maker (signals for upper and main flap of double flap wave maker at Hamburg Ship Model Basin)。 The gener- ated wave train is registered at a stationary wave probe close to the wave maker and transformed to x = 125 m (compare target wave train)。 The ship position is mea- sured during the test。 Thus, the stationary wave  train is transformed to the moving reference frame of the ship

Fig。  12:  Roll motion of a multipurpose vessel (GM   =

1。44m, v = 14。8 kn und µ = ±20◦) in a regular wave from astern (λ = 159。5 m, ζcrest = 5。8 m) with proceed- ing high transient wave packet (compare Fig。 7)。

model to obtain the wave as experienced by the ship。 The resulting (measured) roll motion can be directly compared to this wave train (Fig。 13 bottom)。  The same test data is used for a visual comparison of numer- ical simulation and model test results in Cramer et al。 (2004)。

Discussion, conclusions and perspective

In this paper a modified non-linear approach for mod- elling wave propagation is presented which provides

上一篇:南京某软件园研发楼空调系统设计
下一篇:船舶设计中的消防安全性能分析英文文献和中文翻译

虚拟船舶装配集成建模方...

性别影响幼儿与同伴冲突英文文献

船舶系泊绞车系统英语文献和中文翻译

船舶操纵仿真方法英文文献和中文翻译

船舶运动仿真系统英文文献和中文翻译

会计师事务所任期与审计...

ADO.NET结构与概述英文文献和中文翻译

STC89C52单片机NRF24L01的无线病房呼叫系统设计

压疮高危人群的标准化中...

提高教育质量,构建大學生...

浅谈高校行政管理人员的...

浅论职工思想政治工作茬...

酵母菌发酵生产天然香料...

上海居民的社会参与研究

从政策角度谈黑龙江對俄...

AES算法GPU协处理下分组加...

基于Joomla平台的计算机学院网站设计与开发