The drag force in each stage can be differently derived as below。

In the 1st stage, most of drag forces are caused by friction between anchor and soil and the equation (1) can be used as a drag force equation。

F1, F2=N1·  (W+C·Wadd) (3)文献综述

N1 : Bearing capacity factor of stage 1

W : Weight of anchor

Wadd : Weight of sand accumulated over the fluke (Wadd = (Af·Lf·ρg·sinθ1) / 2)

C : calibrating constant, including soil heave effect

γ  : Specific weight of wet soil (γ = ρg)

On the 2nd stage, most of drag forces are caused by soil resistance on the failure wedge surface and the equation (2) can be used as a drag force equation。

F3=F2+N2·Af·ρg·d (4)

N2 : Bearing capacity factor of stage 2

A : Fluke area

d : Depth of fluke

By applying the test results to Eqs。 (3) and (4), bearing capacity factors of each stage are derived as in Tables 7~8。

Table 7 Bearing capacity factor (sand)。

TYPE W (kgf) N1 C N2

HALL 6000 0。79-0。82

1。2 9。75

9350 0。71-0。75 10。60

12300 0。90-0。96 8。18

AC-14 4500 0。70

1。6 5。91

6975 0。70 5。23

9225 0。71 6。55

POOL-N 6975 1。01-1。05

1。8 5。00

9225 0。90-0。93 5。21

Table 8 Bearing capacity factor (mud)。

CONCLUSIONS

This study is carried out to verify the drag embedding motion and the resultant holding force of three types of anchor models (HALL, AC-14, POOL-N) on both hard(mud) and soft(sand) seafloor, and to derive governing equations, regarding the relations of the anchor geometry and the holding force。

Considering the test results, the anchor  embedding motion is persified by three stages with different kinds of motion and force applied and, finally, the governing drag force equation in each stage is derived with respect to the anchor geometry and the embedded depth on both hard and soft seafloor, using the bearing capacity factor。

The results can be used to verify the actual holding capacity of each type of DEA, as reference, and be used as fundamental data for the development of more efficient and higher performance DEA in the future。

ACKNOWLEDGEMENT

This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy。 (No。 20114030200050 )文献综述

摘要由于的船舶及其他浮动海上结构变得更大,同时海洋环境变得恶劣,要求嵌入型锚抓力性能更稳定和更高。本文介绍了拖动嵌入运动的实验研究和三类拖埋置式锚的合力模型。

上一篇:除尘式道路清洁机英文文献和中文翻译
下一篇:新型锚具的抓力性能英文文献和中文翻译

活塞环/气缸套在摩擦和磨...

有限元模拟在开模锻造中...

在线学习的概述英文文献和中文翻译

数字通信技术在塑料挤出...

CAE技术在车辆安全性应用英文文献和中文翻译

十九世纪锚机的发展英文文献和中文翻译

新型锚具的抓力性能英文文献和中文翻译

浅谈动画短片《天降好运》中的剧本创作

小学《道德与法治》学习心得体会

大学生就业方向与专业关系的研究

组态王文献综述

人事管理系统开题报告

适合宝妈开的实体店,适...

弹道修正弹实测弹道气象数据使用方法研究

淮安市老漂族心理与休闲体育现状的研究

紫陵阁

林业机械作业中的安全性问题【2230字】