Fig。 1。 Sleeve spring-type torsional vibration damper。

(a)Sleeve spring pack

(b)Dimensions

Fig。 2。 Sleeve spring pack used in MT881 Ka-500 engine。

through an analysis of the 90°bending process。 In addition, we conducted durability tests to verify the wear resistance of the inner star and the outer star according to heat treatment speci- fications。

2。Theory

2。1Spring constant of sleeve spring and torsional character- istics of torsional vibration damper

The design parameters of the sleeve spring were determined as shown in Fig。 3。 The spring constant of the sleeve spring is expressed as [1]

Fig。 3。 Design parameters of sleeve spring。

Fig。 4。 Geometry of sleeve spring, whether inner star rotates or not。

Fig。 5。 Sleeve spring pack and damper assembly。

The sleeve spring pack used in the torsional vibration dam- per (Fig。 5) has a structure similar to leaf springs connected in

12D  ⎢  sin1⎜     GAP  ⎟⎥

(1)

parallel。  The  relation  between  the  torsional  torque  and the

⎝D  ⎠⎦

rotation angle of the inner star of the torsional vibration dam- per is expressed as [1]

The dynamic  characteristics  of a torsional  vibration  damper

can be conceived as functions of the torsional torque versus

the torsional angle of the inner star。 Fig。 4 shows the geometry of a sleeve spring, whether the inner star rotates or not, when a sleeve spring pack is assembled in the damper。

The relation between the angle of the open gap in the sleeve spring and the rotation angle of the inner star is expressed

    2   RPitch    。 (2)

DA  RPitch 

2。2

Spring-back in the two-roll bending process

The coordinate system and nomenclatures describing the pure bending process are shown in Fig。 6。 [13, 14] The bend- ing moment needed to produce the bend results in stress in the X-direction, so the bending moment is expressed as

Fig。 6。 Coordinate system and nomenclatures in pure bending process。

Springback occurs upon removal of the bending moment。 The subscript ‘i’ represents the values before springback and the subscript ‘f’ represents the values after springback。 The stress deviation thus is expressed as

(a)Modeling

The deviation of the bending moment is expressed as

Boundary conditions

Fig。  7。 Modeling  and  boundary conditions  for obtaining  spring con-

stant of sleeve spring。

For nonlinear strain hardening material, flow stress, includ- ing the conditions of the plane-strain state and volume con- stancy is expressed as

After unloading, since the sum of the loading moment and unloading moment equals zero, we have

M M 0 。 (8)

Therefore, by Eqs。 (4), (6) and (7), the relationship between the radii of the sleeve spring before and after springback is expressed as

Fig。 8。 Results obtained from finite element analysis (FEA)。

Finite element analysis (FEA) and experiments on

core components

The forming radius is calculated by Eq。 (10), which is con- verted from Eq。 (9):

3。1

Sleeve spring

3。1。1Spring constant and torsional characteristics

A finite element analysis (FEA) using Ansys® Version 11。0

上一篇:护理床及其轮椅装置英文文献和中文翻译
下一篇:PID控制方法的驳船定位系泊系统英文文献和中文翻译

提高教育质量,构建大學生...

从政策角度谈黑龙江對俄...

酵母菌发酵生产天然香料...

压疮高危人群的标准化中...

基于Joomla平台的计算机学院网站设计与开发

浅论职工思想政治工作茬...

上海居民的社会参与研究

AES算法GPU协处理下分组加...

浅谈高校行政管理人员的...

STC89C52单片机NRF24L01的无线病房呼叫系统设计