where    ∈  × is the mooring line configuration matrixandNisthenumber of mooringlines。Thenitcanbedefined as

experiment results are to be shown。 For this, the experimental set-up is illustrated in Fig。 3, and the schematicdiagramforexperimentalisshownin Fig。 4。 As illustrated in the figures, the control

system (NICompactRio)isplacedonthevessel andworksbyitself。

However,thevesselmotionsare captured by the CCD camera which isattachedonthecelling。 Theimagedataobtainedbycameraistransferred to host onshore computer, and vessel motions are calculatedbyusingvectorcodecorrelation technique in realtime6~7)。Thenthecalculated position and heading angle are sent to a real time controlsystemCompactRioplacedonthe vessel。

Fig。 3Photooftheexperimentsystem setup Also, the information including vesselmotions

andallsensingsignalsaretransferredto the

mass (Balancing Weight in Fig。 4) are suspended betweenthetwoendpointsofcabletoillustrate the passive control property of PM system which provides the restoring, damping and mean control forcestocompensatetheloadvariationdueto wind, wave and current。 Here, the weightofeach massis0。2[kg]。

Fig。4Schematicdiagram ofexperimental set-up

3。2experimentresults

Theinertiaanddampingmatricesofbargeship,

 and,arecalculatedbyhydrodynamic softwarepackageandexperiment as:

⎡20。2[kg] 0 0

monitoring system (Host Computer) bywireless

M ⎢

0 28。2[kg]0。5[kg  m2 ]⎥ ,

network。Theprocessandtechniqueforexperiment

⎣⎢ 0 0。5[kg] 3。0[kg  m2 ]⎥⎦

(8)

are precisely illustrated in Fig。 4 and Fig。5 as described in previous。 Where, thevesselcomprises the barge ship and mooring lines。Especially,the bargeshiphasamassm=18。5[kg],length, L=1。3[m] and breath, B=0。4[m]。 And 4mooring

D diag{1。6[kg/s],8。0[kg/s], 1。2[kg。m2 /s]}。

Themooringlinesconfigurationaredescribedas

(x1, y1 ) (0。65,0。2), (x2 , y2 ) (0。65,0。2),

linesareproperlyinterconnectedbetween the vesselthroughsailwinchesandthewallof basin。

(x3 , y3 ) (0。65, 0。2), (x4 , y4 ) (0。65, 0。2)。

(9)

Also,theload-cellstomeasurethecabletension are placed on the cable。 Where the submerged

The PID controller usedinthisstudy has followingstructure:

The integral term is used to eliminate the steady-state error between the desired position and actualpositionofvessel。  and areprovided as:

illustrates when the hard disturbance condition is considered,thegoodperformance of ship cannot bemaintained。Inthiscase,theship is continuouslyoscillatedfor long time。 In contract to the non-activated control given in Fig。 5, good control performancecanbepreservedfromnormal to hard disturbance condition in the caseofPID control as shown in Fig。 6。 Thewinchessystem change the tension of mooring linestomakethe bargeshipreturntoinitialpositionafteraffection ofenvironmentalloads。Thecomparisonbetween the commanded tension and actual tension of each mooring line isshowninFig。7。Withcontrolling the winch by pulling and releasing each line, the tension of mooring line can follow the commanded tension made from controller。 In the PID case, the smootherchangeofcommandedtensionis shown。

4。Conclusion

Inthispaper,asthefirsttries,theauthors build

上一篇:套筒弹簧式扭振减振器制造英文文献和中文翻译
下一篇:CAE技术在车辆安全性应用英文文献和中文翻译

太阳能最大功率点追踪和...

虚拟船舶装配集成建模方...

机床控制系统英文文献和中文翻译

发动机双燃料控制系统英文文献和中文翻译

船舶操纵仿真方法英文文献和中文翻译

单片机温度控制英文文献和中文翻译

机械手系统英文文献和中文翻译

基于Joomla平台的计算机学院网站设计与开发

AES算法GPU协处理下分组加...

压疮高危人群的标准化中...

上海居民的社会参与研究

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

提高教育质量,构建大學生...

酵母菌发酵生产天然香料...