It can be expected that the waste heat energy from the lower temperature heat sources like refrigeration water, intercooler and aftercooler will be difficult to use in Rankine cycles。 These waste heat sources represent half of the analyzed total  waste  energy。 See Table 2。 This will be discussed later  on。

The following procedure has been used for analyzing engine energies and calculating theoretical Rankine cycles: First, the engine   steady   point  has   been  modelled  with  OpenWAM™   to

estimate possible waste heat sources。 Second, the calculated available heat energies have been used in theoretical Rankine cycles, calculated with different fluids, where efficiencies, temper- atures and powers have been estimated。

4。Configuration with all waste heat sources。 A single cycle

The performance of a bottoming Rankine cycle can be evaluated under perse working conditions for the pre-selected working fluids (R245fa, FC72, FC87, HFE7000, HFE7100, R236fa, RC318    and

water)。 This pre-selection was performed by means a study similar to studies that can be found in the literature on selection of working fluid for Rankine cycles [28]。 The analysis assumes the following: steady state conditions, no pressure drop in the vaporizer and condenser, and isentropic efficiencies for the expansion machine and pump of 100%。 Regarding the implementation of these configurations in the industry applications, an appropriated expander machine must be selected to obtain an acceptable effi- ciency and to consider the most important internal irreversibilities of these cycles。 For this objective, the Japiske Turbine Chart [29] or Barber-Nichols Turbine Chart [30] can be utilized to approximate the most effective expander machine。

A parametric-iterative method has been employed for choosing the optimum working fluid and to obtain the maximum working fluid mass flow for each investigated vaporizer and superheater temperatures。 Aiming  to recover all  of  the  available waste    heat

Steam Cycle Output Power (kW)

Working Fluid mass flow (kg/s)

480 Optimum 480

Optimum

460 36 460 0。06

0。058

440 35 440 0。054

420 34 420 0。05

400 32 400 0。046

380 30 380 0。042

260 18 260

220 240 260 280 300 320 220 240 260 280 300 320

Evaporation  Temperature [ºC] Evaporation Temperature (ºC)

Cycle Efficiency ( )

0。3

260

220 240

上一篇:改善重型SCR系统的应用程序英文文献和中文翻译
下一篇:齿条刀具对渐开线直齿轮根切英文文献和中文翻译

张家港某舾装码头工程设计+CAD图纸

海洋工程英文文献和中文翻译

船舶建造工程仿真英文文献和中文翻译

知识工程的汽车覆盖件冲...

计算机辅助工程设计重型...

机械工程设计选材基础知...

国际工程项目组织与管理英文文献和参考文献

压疮高危人群的标准化中...

AES算法GPU协处理下分组加...

提高教育质量,构建大學生...

酵母菌发酵生产天然香料...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

基于Joomla平台的计算机学院网站设计与开发

浅谈高校行政管理人员的...

从政策角度谈黑龙江對俄...

上海居民的社会参与研究

浅论职工思想政治工作茬...