In order to solve the problem of the geometrical synthesis, two mobile coordinate systems are introduced: XlOlYl is connected with the gear (the specified profile l); while XηOηYη is connected with the rack-cutter (the searched profile η)。 As the axis OηXη (the centrode line) of the rack-cutter rolls without sliding on the reference circle (of a radius r) of the gear, the displacement s of XηOηYη is synchronized with the rotation of XlOlYl at an angle φ, where s = rφ。 The place of the contact points of profiles l and η in the motionless plane, designed with K, A, etc。 is defined as perpendicular lines to the respective positions, in which the radial line

Table 2

Geometric parameters of involute spur gears with undercut teeth。

Parameters and dimensions Symbol Equation Type of undercutting

ρmax = z sinα 2。052 2。052 2。052

Minimum addendum modification  coefficient xmin xmin = ha −0,5z sin2α 0。649

λr  =[mδr  /(ra  − rb)]。100 12。74 % 0 % 4。76 %

λt    =(2mδt  /sb)。100 20。66 % 4。82 % 12。21 %

Fig。 10。 Undercutting — type I: z =6; x = −0。2 b xmin; δr = 0。125; δt = 0。147; α=20°; ha =1; c* = 0。25; ρ*= 0。38。

l takes, are dropped from the pitch point P。 In fact the equations of the curve η are derived by defining the place of the same contact points in the rectilinear moving coordinate system XηOηYη。

After executing the respective transformations and conversions, the parametric equations of the boundary fillet — type IIa are

finally written as follows:

Xη ¼ rðφ− cosφ sinφÞ ¼ XηðφÞ ;

2

Yη ¼ −r sin φ ¼ YηðφÞ ; ð

where φ is the angular parameter of the curve η, and r is the radius of the reference circle of the gear, calculated by the equation

r ¼ mz=2 : ð5Þ

The obtained curve η is pided by point А to two segments: AN and AM。 On Figs。 4 and 3a it is seen that only the segment AM appears as the real boundary rack-cutter fillet。 This means that when drawing the real curve η, the parameter φ gets an initial value φ= α (point A) and increases in the direction from point A to point M。

From the differential geometry it is known that the radius of a curvature ρ on each curve, specified as X = X(φ), Y = Y(φ), is defined from the equation

Y€ are the first and second derivatives to the parameter φ。

After differentiating Eq。 (4) and taking into consideration that

η  ¼ 2r sin φ;

X€ η  ¼ 4r sinφ cosφ;

Y_ η  ¼ −2r sinφ cosφ;

Y€ η  ¼ −2r cos2φ; ð7Þ

for the equation of the radius of the curvature of the curve η, the following formula is obtained

4r2 sin4φ þ 4r2 sin2φ cos2φ

上一篇:实用热力工程英文文献和中文翻译
下一篇:弧焊机器人传感器英文文献和中文翻译

中学生科学探究中对等论...

学前教育英文文献和中文翻译

微注塑成型工艺参数对成...

土壤应力对桩基桥梁历史...

基于对象的编程评估英文文献和中文翻译

U型弯曲部分工艺对中心式...

采用离散涡法对各船型黏...

AES算法GPU协处理下分组加...

酵母菌发酵生产天然香料...

提高教育质量,构建大學生...

浅论职工思想政治工作茬...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

基于Joomla平台的计算机学院网站设计与开发

从政策角度谈黑龙江對俄...

浅谈高校行政管理人员的...

上海居民的社会参与研究

压疮高危人群的标准化中...