摘要地表的地物分布是认识和了解各种自然和人文现象的基础,特别是土地利用覆盖的信息,是各种生产决策的重要依据,准确地获知这些信息具有重要的科 学和现实意义。现今,遥感技术的应用已越来越广泛,它是根据传感器接收到不 同地物发射或反射的电磁波对地物的一种远距离探测技术。通过遥感影像,按照 一些算法和规则,即可实现对不同地物的分类,遥感技术不仅监测范围广、获取 信息快、周期短,而且避免了由于天气和地域条件所带来的限制。69941

为了分析不同分类方法对地表遥感影像的分类效果,本文以黑河流域资源三 号卫星影像作为实验数据,分别采用最大似然分类法、迭代自组织数据分析算法

(ISODATA)和决策树分类法对影像进行分类,结果表明最大似然分类法和决策 树分类法精度都较高,总体精度分别为 95%和 93.75%,但通过与全球 30 m 地表 覆盖数据的比较,可以发现决策树分类法在水体和居民地分类中更接近实际值。 决策树分类不但能够充分利用地物光谱信息,而且增强了地物非光谱信息对分类 结果的作用。

毕业论文关键词:地表分类 资源三号卫星 最大似然分类法 ISODATA 决策树分类 法

Surface classification based on resource three (ZY-3)data

Abstract Feature distribution surface is knowledge and understanding of natural and human phenomena basis, particularly land use information / coverage, is an important basis for a variety of production decisions and accurately informed of this information has important scientific and practical significance. Today, the application of remote sensing technology has become increasingly widespread, it is received or reflected by different objects emit electromagnetic waves feature a remote  sensing  technique based on the sensor. By sensing image, according to some algorithms and rules, you can achieve the classification of different objects, not only to monitor a wide range of remote sensing technology, access to information, short cycle, and avoid limitations due to the weather and geographical conditions brought about.

To analyze the effect of different classification methods to classify  surface remote sensing images, the paper resources in Heihe River Resources satellite three image as the experimental data were used to maximum likelihood classification method, iterative self-organizing data analysis algorithm (ISODATA) and  decision tree classification of images the classification results show that the maximum likelihood classification and decision tree classification accuracy are high, overall accuracy was 95% and 93.75%, but by comparing the data with 30 m of surface coverage of the globe can be found in classification tree water and residents classified in closer to the actual value. Decision tree classification can not only take full advantage of the feature spectrum of information, but also enhances the role of information on non-spectroscopic feature classification results.

Key Words: surface classification Resources satellite three maximum likelihood classification ISODATA decision tree classification

目录

I

Abstract II

目录 IV

图清单 V

表清单 V

1 绪论 1

1.1  研究目的和意义

上一篇:基于SIFT算法的InSAR图像配准
下一篇:GPS外业测量及其质量的检核

基于数据挖掘的项目型企业CRM应用研究

基于消费者行为变迁的奢...

基于干中学理论的员工培训形式与方法研究

企业人力资源成本有效控制研究

基于AHP的互联网金融企业创新绩效评价的研究

基于微信网络政治参与的缺陷及其完善探析

基于价值流的D公司生产线标准作业研究

谷度酒庄消费者回访调查问卷表

多元化刑事简易程序构建探讨【9365字】

辩护律师的作证义务和保...

中国古代秘书擅权的发展和恶变

《醉青春》导演作品阐述

浅谈新形势下妇产科护理...

高校网球场馆运营管理初探【1805字】

国内外无刷直流电动机研究现状

浅谈传统人文精神茬大學...

拉力采集上位机软件开发任务书