之间的关系,也常常是多标签和文本学习算法的初步假设[30,31]。
1.3 本文的研究内容
本文中,作者将一种概率因子模型(PFM)方法用于社会图像标签的细化,并进一步将
这种概率因子模型拓展为涵盖了图像内容一致性和标签相关性的约束概率因子模型
(CPFM) ,深入研究探讨了基于概率因子模型的社会图像标签细化方法。该方法利用图像-
标签矩阵的分解与重构,再加入内容一致性和标签相关性的约束项,实现对社会图像标签的
细化。
实验证实了本文的约束概率因子模型(CPFM)算法对细化社会图像的标签有着十分良
好的效果。同时,作者也通过实验将约束概率因子模型(CPFM)的方法与传统的概率矩阵
分解(PMF)方法进行了比较,实验结果表明本文中的约束概率因子模型(CPFM)方法明
显优于传统的概率矩阵分解(PMF)方法。
1.4 本文的组织结构
本文后续内容结构如下。
第 2 章介绍了与本文算法有关的基础知识。
第 3 章具体介绍了概率因子模型(PFM)算法,对内容一致性和标签相关性要素进行了
详细介绍,并给出了约束概率因子模型(CPFM)框架。
第 4 章给出了部分实验分析。
最后是结论和致谢。
上一篇:基于自由能的遥感图像质量评价
下一篇:基于MFC的数字信号处理软件设计与实现

基于android的环境信息管理系统设计

基于激光超声检测金属材...

基于MOODLE平台的在线交互式学习设计

基于离散事件系统Petri网模型的可达图研究

基于高斯过程动态模型的时序数据恢复方法

基于深度学习的目标识别算法研究

MATLAB基于流形学习与神经网络的预测建模

浅论职工思想政治工作茬...

上海居民的社会参与研究

压疮高危人群的标准化中...

酵母菌发酵生产天然香料...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

AES算法GPU协处理下分组加...

基于Joomla平台的计算机学院网站设计与开发

浅谈高校行政管理人员的...

从政策角度谈黑龙江對俄...

提高教育质量,构建大學生...