Marr视觉计算理论立足于计算机科学,系统地概括了心理生理学、神经生理学等方面取得的所有重要成果,是视觉研究中迄今为止最为完善的视觉理论。 Marr建立的视觉计算理论,使计算机视觉研究有了一个比较明确的体系,并大大推动了计算机视觉研究的发展.人们普遍认为,计算机视觉这门学科的形成与Marr的视觉理论有着密切的关系.

Marr视觉理论的组成如下:源]自=吹冰^`论\文"网·www.chuibin.com/

1)信息处理的三个层次

计算理论 表示和算法 硬件实现

计算的目的是什么?为什么这一计算是合适的?执行计算的策略是什么 如何实现这个计算理论?输入、输出的表示是什么?表示与表示之间的变换是什么? 在物理上如何实现这些表示和算法?

2)视觉表示框架的三个阶段

第一阶段(也称为早期阶段):

将输入的原始图像进行处理,抽取图像中诸如角点、边缘、纹理、线条、边界等基本特征,这些特征的集合称为基元图(primitive sketch);

第二阶段(中期阶段):

指在以观测者为中心的坐标系中,由输入图像和基元图恢复场景可见部分的深度、法线方向、轮廓等,这些信息包含了深度信息,但不是真正的物体三维表示,因此,称为二维半图(2.5 dimensional sketch);

第三阶段(后期阶段):

在以物体为中心的坐标系中,由输入图像、基元图、二维半图来恢复、表示和识别三维物体。

1.5 本文的主要内容安排

本文主要分为以下章节:

第一章介绍本课题的选题依据及价值,简单介绍了计算机视觉的一些概念,Marr视觉理论。

第二章主要介绍一下常用的立体匹配算法和匹配代价的计算。

第三章介绍立体匹配代价计算以及几种常用的视差图的获取方法。

第四章介绍动态规划,描述动态规划算法的基本知识与常用算法。

第五章写基于动态规划的立体匹配,详细阐述基于动态规划的立体匹配算法如何实现,并给出单方向DP的实验结果,而之后的一小节则是我参照SGBM算法所做的双方向DP实验结果及分析。

2立体匹配算法的相关概念

2.1  立体视觉匹配原理

立体匹配是寻找同一场景中的两幅不同图像对应点的过程。匹配主要包括两部分,特征检测和特征匹配。由于存在多种的误差因素,比如噪声、亮度差异、遮挡和透视失真等的影响,图像对之间的对应点其实是有差异的。对于同一副图像中的一个特定特征或者窗口,通常在另一幅图像中会有几个候选点的存在,因此必须加入一些额外的约束来帮助获得匹配【2】:

(1)极线约束

 在这个约束下,匹配点必然位于其在另一幅图像的极线上,因此时差的搜索沿着极线进行。对于极线经过配准的立体图像对,匹配点的搜索是沿着极线进行的,将潜在的搜索空间由2D降到了1D。

(2)唯一性约束

  在这个约束下,第一幅图像只能对应第二幅图像中的一个像素,匹配点是唯一的。

(3)光学测定学相容性约束

在这个约束下,两幅图像中光的亮度可能仅仅差一点。由于在光源、表面法向和观察者之间的相互角度的原因,它们不大可能完全相同,但是差别一般不会很大。实际上,该约束对于图像抓取的条件来说是非常自然的。

(4)几何相似性约束

 

上一篇:BP神经网络工具制作
下一篇:基于Android定位信息的紧急事件消息系统设计

采用颜色共生矩阵的图像分析技术实现

jsp+mysql网上化肥店系统的设计与开发

java的B2C型电子商务网站管理系统的设计

基于MOODLE平台的在线交互式学习设计

基于离散事件系统Petri网模型的可达图研究

局域网管理系统的设计与实现

Wireshark的P2P文件共享中的行为提取软件设计

浅谈动画短片《天降好运》中的剧本创作

紫陵阁

组态王文献综述

林业机械作业中的安全性问题【2230字】

适合宝妈开的实体店,适...

小学《道德与法治》学习心得体会

大学生就业方向与专业关系的研究

淮安市老漂族心理与休闲体育现状的研究

弹道修正弹实测弹道气象数据使用方法研究

人事管理系统开题报告