根据假设,每个病人每天可使 个健康者变为病人,因为病人数为 ,所以每天共有 个健康者被感染,于是 就是病人数 的增加率,即有
                                     (3)
又因为                                                          (4)
再记初始时刻( )病人的比例为 ,则
 ,                               (5)
方程(5)是1.5节中出现过的Logistic模型。它的解为
                                   (6)
 和 的图形如图1和图2所示。
图1  SI模型的 曲线
图2  SI模型的 曲线
由(5),(6)式及图1可知,第一,当 时 达到最大值 ,这个时刻为
                               (7)
这时病人增加得最快,可以认为是医院的门诊量最大的一天,预示着传染病高潮的到来,是医疗卫生部门关注的时刻。 与 成反比,因为日接触率 表示该地区的卫生水平, 越小卫生水平越高。所以改善保健设施、提高卫生水平可以推迟传染病高潮的到来。第二,当 时 ,即所有人终将被感染,全变为病人,这显然不符合实际情况,其原因是模型中没有考虑到病人可以治愈,人群中的健康者只能变成病人,病人不会再变成健康者。
为了修正上述结果必须重新考虑模型的假设,下面两个模型中我们讨论可以治愈的情况。
模型3(SIS模型) 有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,所以这个模型称SIS模型。
SIS模型的假设条件1,2与SI模型相同,增加的条件为
3.每天被治愈的病人数占病人总数的比例为常数 ,称为日治愈率。病人治愈后成为仍可被感染的健康者。显然 是这种传染病的平均传染期。
不难看出,考虑到假设3,SI模型的(3)式应修正为
                             (8)(4)式不变,于是(5)式应改为
 ,                        (9)
我们不去求解方程(9)(虽然它的解可以解析地表出),而是通过图形分析 的变化规律。定义
                                   (10)
注意到 和 的含义,可知 是整个传染期内每个病人有效接触的平均人数,称为解除数。
利用 ,方程(9)可以改写作
                             (11)
上一篇:Black-Scholes方程的求解方法分析及应用
下一篇:利用插值多项式求解函数问题的综述

微课在中学数学素质教育中的应用

中学数学教学中的模型思想与应用

层次分析法在决策中的分析及其应用

分支定界法在资源分配中的应用MATLAB仿真

矩阵在经济领域中的应用研究

Logistic回归分析模型的应用及R软件实现

齐次马尔科夫过程在金融保险方面的应用

基于Joomla平台的计算机学院网站设计与开发

AES算法GPU协处理下分组加...

浅论职工思想政治工作茬...

压疮高危人群的标准化中...

浅谈高校行政管理人员的...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

上海居民的社会参与研究

酵母菌发酵生产天然香料...

提高教育质量,构建大學生...