其中   、  是数, 、 是函数,则(1.6)式是线性代数方程组                                                                     
在实际中,可以取各种不同形式的权函数,于是就得到各种特殊的加权余量法.
2 加权余量法的几种特殊情况
  下面介绍几种常见的特殊的加权余量法,伽辽金(Galerkin)法、矩法、配置法和子区域法.
2.1伽辽金法
如果在(1.6)式中取 为权函数,即令
                                                    (1.7)                                                                           
这就是伽辽金法.若A是线性算子,则方程组(1.7)为
        (1.8)
如果A是对称算子,即
 
则线性方程组(1.8)的系数矩阵是对陈矩阵.
上一篇:一个新的Lie代数及其应用
下一篇:牛顿迭代法在求解非线性方程中的应用

余元公式的证明方法及其应用

泰勒公式及其余项的研究

ARIMA模型余额宝资金流数据的统计预测模型

一次同余式的解法及应用

对余元公式及其应用的讨论

包含组合数的超同余式

剩余类环上矩阵的性质

上海居民的社会参与研究

浅论职工思想政治工作茬...

AES算法GPU协处理下分组加...

从政策角度谈黑龙江對俄...

压疮高危人群的标准化中...

基于Joomla平台的计算机学院网站设计与开发

STC89C52单片机NRF24L01的无线病房呼叫系统设计

酵母菌发酵生产天然香料...

提高教育质量,构建大學生...

浅谈高校行政管理人员的...