毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
回归分析在实际中的应用(2)
1. 预备知识
1.1 一元线性回归
一元线性回归模型是最简单的回归模型.它虽简单,却可以通过其模型的建立了解到回归分析方法的基本思想和应用原理.
1.1.1 一元线性回归分析的基本原理和方法
我们可以用一条直线来表示 和 之间的关系,并且借助最小二乘法,可以得到一元线性回归的回归方程
又叫做回归方程的回归系数.
下面根据最小二乘法原则来确定 的取值.
对任意一个 ,回归值 可通过回归方程来确定.回归值 与实际观测值 之差 描述了 对于回归直线 的偏离程度.对所有的 ,若 对于 的偏离程度越小,那么直线与所有的试验点拟合得也就越好. 与 的偏离平方和为
由最小二乘法可知若要使Q达到极小值,只需求得上式对 的偏导,且使其为零,就可以推导出 的值
其中 , 分别表示 , 的算术平均值.
1.1.2 决定系数
利用最小二乘法可以求出来一个值,使得因变量的观察值 与因变量的预测值 之间的离差平方和最小的a和b值. 与 之差就是以 估计 产生的误差;第 个观察值的离差是 ,此差值被称为第 个残差.所以,最小二乘法中所处理的平方和,也常常被称为误差平方和或者残差平方和,用SSE来表示.
所以,若回归平方和与总离差平方和之比越大,也就说线性回归的效果越好,同时还表明拟合优度也就越好.
共2页:
上一页
1
2
下一页
上一篇:
正定二次型的性质及其应用
下一篇:
初等变换的应用
微课在中学数学素质教育中的应用
螺纹钢期货交易中几个影...
层次分析法在决策中的分析及其应用
基于因子分析和聚类分析...
双色球和“N选M”彩票的中奖概率分析与比较
分支定界法在资源分配中的应用MATLAB仿真
矩阵在经济领域中的应用研究
浅谈高校行政管理人员的...
STC89C52单片机NRF24L01的无线病房呼叫系统设计
基于Joomla平台的计算机学院网站设计与开发
酵母菌发酵生产天然香料...
AES算法GPU协处理下分组加...
上海居民的社会参与研究
提高教育质量,构建大學生...
浅论职工思想政治工作茬...
压疮高危人群的标准化中...
从政策角度谈黑龙江對俄...