在运用数形结合思想分析和解决问题时,要注意三点:第一是明白概念和运算的几何意义,对于题目中的的条件和结论既分析其代数意义又要分析其几何意义;第二是恰当设立参数、合理运用参数,建立正确关系,做好数与形的相互转化;第三是正确确定参数的取值范围.

下面我将具体从这几个方面来探讨数形结合思想在中学数学解题中的应用. (1)在集合问题中的应用. (2)在函数问题中的应用. (3)在方程、不等式问题中的应用.(4)在三角函数问题中的应用. (5)在几何问题中的应用. (6)在线性规划问题中的应用. (7)在复数问题中的应用. 通过对这些例题的分析讲解充分展现数形结合思想在中学数学解题中的特点,从而将数形结合思想运用到实际教学中.

上一篇:浅谈微分中值定理的若干应用
下一篇:浅谈求数列通项公式的若干方法

浅谈分形几何+matlab代码

浅谈数列极限的若干计算方法

浅谈小学数学图形与几何的教学策略

浅谈求数列通项公式的各种方法

浅谈导数在解高考试题中的应用

浅谈平均不等式的应用

数形结合思想方法在数学解题中的应用

浅论职工思想政治工作茬...

AES算法GPU协处理下分组加...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

上海居民的社会参与研究

压疮高危人群的标准化中...

提高教育质量,构建大學生...

浅谈高校行政管理人员的...

基于Joomla平台的计算机学院网站设计与开发

从政策角度谈黑龙江對俄...

酵母菌发酵生产天然香料...