同理可得递减的有界数列 也存在极限,并按区间套的条件(ii)有                                         
联合(3)、(5)即得(2)式.
最后证明满足(2)的 是唯一的.设数 也满足     
则由(2)式有       
由区间套的条件(ii)得       
故有 .
推论 若 是区间套 所确定的点,则对任给的 ,存在 ,使得当 时有       
注 区间套定理中要求各个区间都是闭区间,才能保证定理的结论成立.对于开区间列,如 ,虽然其中各个开区间也是前一个包含后一个,且 ,但不存在属于所有开区间的公共点.
2.区间套定理在证明一些定理上的应用
2.1实数完备性中相关定理定理
2.1.1 用闭区间套定理证明魏尔斯特拉斯聚点定理
   证  为一有界点集,则存在 ,使得 .   
   现将 等分为两个子区间.因为 为无限的点集,所以至少有一个子区间含有 中的无穷个点,记为 ,则 ,且
将 等分为两个子区间.那么至少有一个子区间含 中无穷个点,记这个区间为 ,则 ,且
将这样的手续无限进行下去,则得到一个区间列 ,满足
    即 是闭区间套,且每一个闭区间全都含有 中无穷个点.由区间
套定理,存在唯一一点 为 中的点,对任意的 ,存在 ,当 时有 .从而 中含有 中无穷个点,则 为 的聚点.
2.1.2 用区间套定理证明有限覆盖定理
    证明 假设该定理结论并不成立,即不存在 中的有限个开区间覆盖 .
将 等分为两个区间,则至少有一个区间不能用 中的有限个开区间来覆盖.记这个区间为 ,则 ,且
将 等分为两个区间,其中有一个区间不能用 中的有限个开区间来
上一篇:逆向思维在高等数学中的应用
下一篇:曲线积分与积分路径无关性的应用

周期函数定义定理及推论和教学问题

隐函数相关定理及应用

二项式定理巧解数学相关问题归纳和解析

关于整系数多项式有理根...

微分中值定理的应用

微分中值定理的发展历史及应用

韦达定理在中学数学竞赛中的应用

AES算法GPU协处理下分组加...

酵母菌发酵生产天然香料...

上海居民的社会参与研究

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

提高教育质量,构建大學生...

从政策角度谈黑龙江對俄...

基于Joomla平台的计算机学院网站设计与开发

压疮高危人群的标准化中...