摘要在本篇毕业论文中,我对暗原色先验图像去雾处理进行了深刻研究。暗原色先验技术最早由香港中文大学何恺明教授在2009年CVPR大会上提出,并作为一种新型的基于物理模型的图像复原技术获得了广泛应用。暗原色先验是对户外图像进行去雾处理的一种手段。它基于一个重要的观察结果——绝大多数户外去雾图像的局部区域里,至少在一个颜色通道存在一些强度值很低的像素。采用有雾成像模型的这种先验技术,我们可以直接估算出雾层的厚度并随之高质量的恢复得到去雾图像。从对许多不同户外带雾图像的处理的结果中我们可以充分论证这种先验技术的有效性。另外,我们还指出了这种方法的缺点和不足,并提出了改进的方法。9363
关键词 图像去雾 暗原色先验 物理模型 图像增强
毕业设计说明书(论文)外文摘要
Title Image Haze Removal Using Dark Channel Prior
Abstract
In this graduation thesis,I conduct some deep research on the image haze removal using dark channel prior.This technique was proposed on the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009 ,by professor Kaiming He from The Chinese University of Hong Kong,and now it is being widely used.The dark channel prior is a kind of statistics of the haze-free outdoor images. It is based on a key observation - most local patches in haze-free outdoor images contain some pixels which have very low intensities in
at least one color channel. Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high quality haze-free image. Results on a variety of outdoor haze images demonstrate the power of the proposed prior.In addition,we also make some improved algorithms due to the inefficiency of this method.