毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
基于遗传算法的高分辩率雷达目标识别方法(2)
2 遗传算法
遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。
2.1遗传算法的特性
本质上,参与计算的是遗产算法的参数集的代码,而非参数本身;
遗传算法从问题解的串集开始搜索,而不是从单个解开始;
遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作;
遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导指他的搜索方向。
遗传算法通常实现方式为一种
计算机
模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过自然选择和突变产生新的生命种群,该种群在算法的下一次迭代中成为当前种群。
2.2标准遗传算法
1. 选择初始生命种群
2. 循环
3. 评价种群中的个体适应度
4. 以比例原则(分数高的挑中机率也较高)选择产生下一个种群(轮盘法、竞争法及等级轮盘法)。不仅仅挑分数最高的的原因是这么做可能收敛到局部的最佳点,而非整体的。
5. 改变该种群(交叉和变异)
6. 直到停止循环的条件满足
图 1遗传算法的基本流程图
在遗传算法里,优化问题的解被称为个体,它表示为一个变量序列,叫做染色体或者基因串。染色体一般被表达为简单的字符串或数字串,不过也有其他的依赖于特殊问题的表示方法适用,这一过程称为编码。首先,算法随机生成一定数量的个体,有时候操作者也可以对这个随机产生过程进行干预,以提高初始种群的质量。在每一代中,每一个个体都被评价,并通过计算适应度函数得到一个适应度数值。种群中的个体被按照适应度排序,适应度高的在前面。这里的“高”是相对于初始的种群的低适应度来说的。
下一步是产生下一代个体并组成种群。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变 ( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。
遗传算法有3个最基本的操作:选择,交叉,变异。
选择:选择一些染色体来产生下一代。一种常用的选择策略是 “比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:
共4页:
上一页
1
2
3
4
下一页
上一篇:
89C51单片机热电偶的温度测量系统设计
下一篇:
激光测距中激光接收电路的设计
认知无线电网络中基于双...
基于TCP/IP技术的转向架振动测试系统设计
基于PM2.5浓度的健康出行路径规划及实现
基于涡旋电磁波的新型雷达成像技术研究
基于相关滤波器的长期跟踪算法研究
基于ZigBee协议轨道交通环...
基于QT的图像处理系统设计
多元化刑事简易程序构建探讨【9365字】
国内外无刷直流电动机研究现状
浅谈传统人文精神茬大學...
高校网球场馆运营管理初探【1805字】
谷度酒庄消费者回访调查问卷表
中国古代秘书擅权的发展和恶变
《醉青春》导演作品阐述
浅谈新形势下妇产科护理...
拉力采集上位机软件开发任务书
辩护律师的作证义务和保...