The engineer’s early involvement in the design of any facility
can have a considerable effect on the energy consumed by the build-
ing. If designed carefully, a system keeps energy costs to a mini-
mum. In practice, however, a system is usually selected based on a
low first cost or for the performance of a particular task. In general,
single-duct systems consume less energy than dual-duct systems,
and VAV systems are more energy efficient than constant air volume
systems. Savings from a VAV system come from the savings in fan
power and because the system does not overheat or overcool spaces,
nor does it cool and heat at the same time like a reheat system.
The air distribution system for an all-air system consists of two
major subsystems: (1) air-handling units that generate conditioned
air under sufficient positive pressure to circulate it through (2) a dis-
tribution system that carries air from the air-handling unit to the
space being conditioned. The air distribution subsystem often
includes means to control the amount or temperature of the air deliv-
ered to each space.
AIR-HANDLING UNITS
The basic secondary system is an all-air, single-zone, air-condi-
tioning system consisting of an air-handling unit and an air distribu-
tion system. The air-handling unit may be designed to supply a
constant air volume or a variable air volume for low-, medium-, or
high-velocity air distribution. Normally, the equipment is located
outside the conditioned area in a basement, penthouse, or service
area. It can, however, be installed in the area if conditions permit.
The equipment can be adjacent to the primary heating and refriger-
ation equipment or at considerable distance from it by circulating
refrigerant, chilled water, hot water, or steam for energy transfer.
Figure 1 shows a typical draw-through central system that sup-
plies conditioned air to a single zone or to multiple zones. A blow-
through configuration may also be used if space or other conditions
dictate. The quantity and quality of supplied air are fixed by space
requirements and determined as indicated in Chapters 28 and 29 of
the ASHRAE Handbook—Fundamentals. Air gains and loses heat
by contacting heat transfer surfaces and by mixing with air of 建筑空气分布