Because
  ( ),且 ,
Therefore
 ,
Noting the value of any set  , is a fixed constant, while the series (9-5-6) is absolutely convergent, so the general when the item when  ,   , so when n → ∞,
 there
 ,
From this
 
This indicates that the series (9-5-6) does converge to , therefore
    ( ).
Such use of Maclaurin formula are expanded in power series method, although the procedure is clear, but operators are often too Cumbersome, so it is generally more convenient to use the following power series expansion method.
Prior to this, we have been a function ,  and   power series expansion, the use of these known expansion by power series of operations, we can achieve many functions of power series expansion. This demand function of power series expansion method is called indirect expansion.
Example 2
 Find the function , ,Department in the power series expansion.
Solution because
 ,
And
 ,( )
Therefore, the power series can be itemized according to the rules of derivation can be
 ,( )
Third, the function power series expansion of the application example
The application of power series expansion is extensive, for example, can use it to set some numerical or other approximate calculation of integral value.
Example 3  Using the expansion to estimate the value of .
Solution because  
Because of
 , ( ),
So there
 
Available right end of the first n items of the series and as an approximation of  . However, the convergence is very slow progression to get enough items to get more accurate estimates of  value.

References
1. A. K. Grunwald, Uber begrenzte Derivationen und deren Anwendung, Z. Angew. Math. Phys., 12 (1867), 441–480.
2. O. Heaviside, Electromagnetic Theory, vol. 2, Dover, 1950, Chap. 7, 8.
3. J. L. Lavoie, T. J. Osler and R. Trembley, Fractional derivatives and special functions, SIAM Rev., 18 (1976), 240–268.
4. A. V. Letnikov, Theory of differentiation of fractional order, Mat. Sb., 3 (1868), 1–68.
5. J. Liouville, Memoire sur quelques questions de géometrie et de mécanique, et surun noveau gentre pour resoudre ces questions, J. École Polytech., 13(1832), 1–69.
6. J. Liouville, Memoire: sur le calcul des differentielles á indices quelconques, J.École Polytech., 13(1832), 71–162.
7. A. C. McBride and G. F. Roach, Fractional Calculus, Pitman, 1985.
8. K. S. Miller Derivatives of noninteger order, Math. Mag., 68 (1995), 183–192.
9. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, 1993.
10. P. A. Nekrassov, General differentiation, Mat. Sb., 14 (1888), 45–168.
幂级数的展开及其应用
在上一节中,我们讨论了幂级数的收敛性,在其收敛域内,幂级数总是收敛于一个和函数.对于一些简单的幂级数,还可以借助逐项求导或求积分的方法,求出这个和函数.本节将要讨论另外一个问题,对于任意一个函数 ,能否将其展开成一个幂级数,以及展开成的幂级数是否以 为和函数?下面的讨论将解决这一问题.
一、 麦克劳林(Maclaurin)公式
幂级数实际上可以视为多项式的延伸,因此在考虑函数 能否展开成幂级数时,本文来自吹冰/文(论"文?网,毕业论文 www.chuibin.com 加7位QQ324~9114找原文 可以从函数 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.
泰勒(Taylor)公式  如果函数 在 的某一邻域内,有直到 阶的导数,则在这个邻域内有如下公式:
上一篇:没有了
下一篇:无符号Laplace多项式数学应用英文文献和翻译

AngularJS技术介绍英文文献和中文翻译

开关电源水冷却系统英文文献和中文翻译

减数分裂和基因重组英文文献和中文翻译

太阳能最大功率点追踪和...

移动码头的泊位分配问题英文文献和中文翻译

虚拟船舶装配集成建模方...

中学生科学探究中对等论...

酵母菌发酵生产天然香料...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

压疮高危人群的标准化中...

AES算法GPU协处理下分组加...

浅论职工思想政治工作茬...

上海居民的社会参与研究

基于Joomla平台的计算机学院网站设计与开发

浅谈高校行政管理人员的...

提高教育质量,构建大學生...