A natural development of the output error model is to further the properties of the output error. This can be done by assuming that the true process is

vector ϕ(t) and a parameter vector θ Such a model is called

B(q)

y(t) =

C(q)

a linear regression in statistics and the vector ϕ(t) is called regression vector. Fig. 2 displays the ARX modeled data versus the actual data.

where

u(t) + e(t) (6)

F (q) D(q)

3.2  ARMAX modeling

F (q) = 1 + f1q−1

+ . . . + fnf q

−nf

D(q) = 1 + d1q−1 + . . . + d

q−nd

The basic problem  with  the  ARX  model  is  the  lack of adequate freedom in describing the properties of the disturbance term. We could add flexibility to that by describing the equation error as a moving average of white noise. This gives the model:

y(t) + a1y(t − 1) + . . . + ana (t − na)

= b1u(t − 1) + . . . + bnb u(t − nb) + e(t) (4)

e(t) + c1e(t − 1) + . . . + cnc e(t − nc) It can be rewritten as

A(q)y(t) = B(q)u(t) + C(q)e(t)

where

In a sense, this is the most natural finite-dimensional parameterization and the transfer functions G and    H  are independently parameterized as rational functions  [9]. In this case the parameter vector is given by

θ = [b1 . . . bnb  f1 . . . fnf c1 . . . cnc  d1 . . . dnd ]

Fig. 4 displays the BJ modeled data versus the actual data.

3.4 State Space model

In state-space form, the relationship between the input, noise and output signals is written as a system of first order differential or difference equations using an auxiliary state vector x(t). For  most physical systems it is  easier to construct models with physical insight in   continuous

and

C(q) = 1 + c1q−1 + . . . + c

q−n

time than in discrete time, simply because most laws of physics are expressed in continuous time. This means that the modeling normally leads to a representation

y1. (sim)

8

y1. (sim)

8

6 6

4 4

2 2

0 0

−2 −2

−4 −4

−6 −6

100 200 300 400 500 600 700 800

Time (sec)

100 200 300 400 500 600 700 800

Time (sec)

Fig. 4. BJ modeled data (- - -) v/s actual data   (—)

x˙ (t) = F (θ)x(t) + tt(θ)u(t) (7)

Here F and tt are matrices of appropriate dimensions (n× n and n× m, respectively for an n-dimensional system

Fig. 5. State-Space modeled data (- - -) v/s actual data (—)

. 1.0324 −0.1613 .

上一篇:对热流道系统注塑工艺英文文献和中文翻译
下一篇:数控车床附件的研究英文文献和中文翻译

开关电源水冷却系统英文文献和中文翻译

多极化港口系统的竞争力外文文献和中文翻译

机床控制系统英文文献和中文翻译

动力传动系统振动特征英文文献和中文翻译

旋转式伺服电机的柔性电...

电力系统智能波形记录仪英文文献和中文翻译

集成生理传感器系统英文文献和中文翻译

上海居民的社会参与研究

基于Joomla平台的计算机学院网站设计与开发

酵母菌发酵生产天然香料...

提高教育质量,构建大學生...

浅论职工思想政治工作茬...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

AES算法GPU协处理下分组加...

浅谈高校行政管理人员的...

压疮高危人群的标准化中...

从政策角度谈黑龙江對俄...