e.g. American Society of Heating Refrigeration and Air-conditioning
Engineers (ASHRAE), but many are proprietary software products
distributed or sold by equipmentmanufacturers [5]. Digital catalogues
that are provided by equipmentmanufacturers can be used to locate a
suitable component model for the given design criteria. They can be
further linked to the equipment sizing tools, e.g. Carrier's HAP tool can
be linked to their chiller selection tool by importing performance data
for the actual chiller.
Tools for energy performance analysis are designed to predict the
annual energy consumption of an HVAC system. Based on a system of
equations that define thermal performance of buildings and sys-
tems, and with given boundary conditions, operation strategy and
controls, these tools perform (hourly or sub-hourly) simulations
(Carrier HAP, Trane TRACE 700, DOE-2, eQUEST, EnergyPlus, ESP-r,
IDA ICE, TRNSYS, HVACSIM+, VA114, SIMBAD, etc.). These tools are
typically used to calculate and analyze the full- and part-load perfor-
mances, to analyze system operation strategy, to compare different
design alternatives, etc. [6–9].
Tools for system optimization are used in conjunction with tools for
energy performance analysis. In multiple simulation runs, a set of
parameters is optimized according to a given objective function. An
example is the generic optimization tool GenOpt [10].
Toolsforcontrolanalysisandcontroloptimization (see also
Section 3.2). The level of HVAC system control modeling and simu-
lation in the available tools varies:
• Controllers can be associated with high abstraction system models,
such as in ESP-r.
• Controllers can be represented explicitly either
- as models of supervisory control, such as in EnergyPlus, or
- as simple models of local control, such as in ESP-r and TRNSYS.
• More advanced representation of controllers, such as fuzzy logic, are
available in e.g. MATLAB based tools (SIMBAD), Dymola and tools
coupled to MATLAB (ESP-r [11], TRNSYS [12]). These tools are
efficient for design andmore comprehensive testing of controllers in
a simulation setting [13], as well as for testing and validation of
controller design in real time [14].
Simulation tools for real-time performance optimization. Benefits of
using simulation tools in the building operational stage are still
insufficiently explored. Simulation tools could be used for:
• Commissioning diagnostics (initial commissioning): i.e. to verify the
performance of the whole building, its subsystems and components
[15];
• Monitoring diagnostics (continuous commissioning) and fault
detection diagnostics: i.e. to detect, analyze, locate and/or predict
problems with systems and equipment occurring during everyday
operation [16–19];
• Emulating a building and its HVAC systems: i.e. simulating the
response of a building and its HVAC systems to building energy
management system (BEMS) commands. Emulators can also be
used for control product development, training of BEMS operators,
tuning of control equipment and imitating fault situations to see
how the BEMS would cope [20];
• Simulation assisted control: i.e. to execute a simulation model
(encapsulated within the BEMS) as part of the control task in order
to evaluate several possible control scenarios and make a choice in
terms of some relevant criteria [20].
The system simulation models that belong to this category are
expected to predict system performance accurately. Thus, they need
to be able to treat the departures fromideal behavior that occur in real
systems and to realistically model controls and HVAC system
dynamics. The tools for energy performance analysis can be used as
上一篇:五轴端铣英文文献和中文翻译
下一篇:数字式EL定位器英文文献和中文翻译

建筑自动化英文文献和中文翻译

新能源空调系统设计英文文献和中文翻译

机械设计制造及其自动化英文文献和中文翻译

超市空调系统英文文献和中文翻译

船舶自动化系统英文文献和中文翻译

PLC自动化制造系统英文文献和中文翻译

南京某软件园研发楼空调系统设计

浅论职工思想政治工作茬...

基于Joomla平台的计算机学院网站设计与开发

压疮高危人群的标准化中...

浅谈高校行政管理人员的...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

提高教育质量,构建大學生...

酵母菌发酵生产天然香料...

上海居民的社会参与研究

AES算法GPU协处理下分组加...