connection weights between the rule of the first j and the output node, all of them are adjustable parameters。

4。2Weight adjustment

The weight choice had a tremendous influence on system performances, if the weight is inappropriate, the convergence speed of neural networks would be reduced。 This article carried on the training based on the gradient descent law to the network weight。

Define objective function as follows:

As the control laws Eqs。 (7)−(8) contain sgn(s), it makes the system to produce high-frequency chattering easily。 Therefore, the saturation function is used instead of the sign function to smooth control signal。 Then, the control law can be rewritten as

u1  [hf(hh) fhfhc e 

(hh)(c e  ls at(s ) k s ) 

hxc  e hhs at(s) k hs]/

M  1 

(d (4) O(4) )2

(13)

(g2 h3    g1h2   g3h2    g2 h1 )

cl e4  fls at(s ) k  s  gu

(21)

j j

j

u2  

(22)

2

where d (4)  is the desired output of the network, while

(4)

5Particle swarm optimization

Oj is the actual output of the network。

Suppose that the learning rate of V, aij  and bij  are η1,

η2 and η3, respectively, the adjustment values are

5。1 Principle of particle swarm optimization

As seen in Eqs。 (21)−(22), the controller parameters

V  M

c , c , c , α, ε , k ,    ε

and k

have a direct impact on  the

1   (I (4) )

x l θ

1 1      2 2

a    

j

 M

(14)

system control law。 The greater the values of cx, cl, cθ,  α,

ε1,  k1, ε2  and k2,  the faster  the  system approached    the

ij

2

(aij )

sliding surface。 However, too large values would make the   control   excessive   and   may   cause   the    system

b   

M

ij



3

(bij )

chattering, which can affect the dynamic performances of approaching process。 Otherwise, the values are   smaller,

where  V  are  w(4) ,

v(4)  and u(4) ,  respectively。 Suppose

although  the  system chattering  is  weakened,  the speed

w(4) ,

(4)

上一篇:撑开式闸阀设计英文文献和中文翻译
下一篇:护理床及其轮椅装置英文文献和中文翻译

大型承载能力起重机船的...

电力系统智能波形记录仪英文文献和中文翻译

红外光电传感器的智能循...

智能城市物流云计算模型英文文献和中文翻译

情景感知智能汽车英文文献和中文翻译

起重机升降传感器系统英文文献和中文翻译

基于网络的注塑模具智能...

酵母菌发酵生产天然香料...

浅谈高校行政管理人员的...

AES算法GPU协处理下分组加...

提高教育质量,构建大學生...

上海居民的社会参与研究

浅论职工思想政治工作茬...

压疮高危人群的标准化中...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

基于Joomla平台的计算机学院网站设计与开发