j j j j

as the distance between the position of the best    particle

(3) O(3)

k

(17)

in the swarm pg,d(n) and xi,d(n)。

vi,d (n 1) vi,d (n) 1r1 ( pi,d (n) xi,d (n)) 

Then, the revised three-parameters of V, aij  and    bij

are as follows:

2r2 ( p

g ,d

(n) xi,d

(n))

vi,d (n 1)  vmax

if vi,d  vmax

V M (4) O(3)

(18)

v   (n 1) v

if v v

(23)

V j j

  i,d min

i,d min

2778

where ω is the inertia weight; η1 and η2 are the acceleration constants, namely cognitive and social parameters, respectively; and r1 and r2 are two random values in the range of [0, 1]。 The above deterministic and probabilistic parameters reflect the effects of the inpidual memory and swarm influence on the particle positions。 The position of particle i, xi,d(n) is iteratively updated as

J。  Cent。  South  Univ。  (2012)  19:  2774−2781

Step 5: Update the velocity and position of particles according to Eqs。 (23)−(24)。

Step 6: Return to Step 2 if the termination condition is not met。 The termination condition is generally the perfect fitness or the maximum calculated cutoff generation。

6Simulation research

xi,d (n 1) xi,d (n) vi,d (n 1)

(24)

To verify the effectiveness of the proposed   method

The optimal solutions can, thus, be acquired by choosing the best particles in a D-dimensional space, where D is the number of variables。 From Eqs。 (23)− (24), it can be observed that the collective intelligence was the distinguishing property of the PSO method。

The optimization progress for parameters cx, cl, cθ, α, ε1, k1, ε2 and k2 in the control law is initialized with a group  of  random  particles  N。  Throughout  the process,

(FNNSMC), a bridge crane system [10]  is introduced into the simulation, M=1 kg, m=0。25 kg, Dx=0。15 N/(s·m), Dl=0。1 N/(s·m), g=9。8 m/s2。 The desired position of trolley is 0。7 m, ld is π-type function, as shown in Fig。 9, the lifting-rope length from 0。7 m to 0。4 m to 0。7 m。  The

initial weights of three RBF networks are 0。001, the central values and widths of twelve RBF neurons in hidden layer are taken as follows:

each particle i monitors three values: its current position (Xi), the best position in previous cycles (Pi) and  its flying velocity (Vi)。

The operator ω played the role of balancing the global search and the local search。 In order to improve the convergence performance of PSO algorithm to assure the initial global search and the subsequent  local research,    a    time-varying    inertia    weight    ω(n)   is

formulated, which is the function of iteration n。

10    10   10   10

c1  10    10   10   10,

95    95    95  95

c2  95   95   95   95,

上一篇:撑开式闸阀设计英文文献和中文翻译
下一篇:护理床及其轮椅装置英文文献和中文翻译

大型承载能力起重机船的...

电力系统智能波形记录仪英文文献和中文翻译

红外光电传感器的智能循...

智能城市物流云计算模型英文文献和中文翻译

情景感知智能汽车英文文献和中文翻译

起重机升降传感器系统英文文献和中文翻译

基于网络的注塑模具智能...

酵母菌发酵生产天然香料...

浅谈高校行政管理人员的...

AES算法GPU协处理下分组加...

提高教育质量,构建大學生...

上海居民的社会参与研究

浅论职工思想政治工作茬...

压疮高危人群的标准化中...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

基于Joomla平台的计算机学院网站设计与开发